2010년도 춘계
마이크로파 및 전파전파 학술대회
논문집

일시: 2010년 6월 4일(금) 9:30~17:50
장소: 일산 커텍스
주최: 사단법인 대한전자공학회 마이크로파 및 전파전파 연구회
사단법인 한국통신학회 마이크로파 및 전파 연구회
사단법인 한국전자파학회 마이크로파 및 전파 연구회
사단법인 한국전자파학회 안테나 및 전파전파 연구회
사단법인 대한전기학회 광전자 및 전자파 연구회
IEEE MTT/AP/EMC Korea Chapter
후원: (주)엠티아이, (주)하이케인 인테리아, 에이스 테크놀로지, 애미즈, 로데슈바르즈, 맷엔텔, 모아소프트, 삼성탈레스, Agilent, anritsu, AVR Korea, CST-Korea, LIG 네스원, SME 교육
<table>
<thead>
<tr>
<th>Time</th>
<th>Session 1</th>
<th>Speaker</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:30</td>
<td>13:30-13:45</td>
<td>양영구 교수 (성균관대) / 구현철 교수 (건국대)</td>
<td>A highly efficient Doherty amplifier considering knee voltage effect</td>
</tr>
<tr>
<td></td>
<td>13:45-14:00</td>
<td>김경훈(포항공과대학교), 김성준(포항공과대학교), 손정현(포항공과대학교), 지승훈(포항공과대학교), 김병균(포항공과대학교)</td>
<td>A Reconfigurable CMOS Front-End</td>
</tr>
<tr>
<td></td>
<td>14:00-14:15</td>
<td>김병균(서울대학교), 최희호(서울대학교), 송재훈(서울대학교), 장지영(서울대학교), 남성욱(서울대학교)</td>
<td>LTCC을 이용한 고출력 GaN 트랜지스터용 Internal matching 회로</td>
</tr>
<tr>
<td></td>
<td>14:15-14:30</td>
<td>정성훈(전자부품연구원), 김동수(전자부품연구원), 한철구(전자부품연구원), 이우성(전자부품연구원), 윤종현(연세대학), 유창세(전자부품연구원)</td>
<td>LINC 전력증폭기의 경로 오차 영향 분석 및 보상에 관한 연구</td>
</tr>
<tr>
<td></td>
<td>14:30-14:45</td>
<td>임종균(건국대학교), 강용철(건국대학교), 구헌철(건국대학교), 구헌철(건국대학교)</td>
<td>3.5GHz 대역 150W 고출력 드허티 전력 증폭기</td>
</tr>
<tr>
<td></td>
<td>14:45-15:00</td>
<td>강경환(성균관대학교), 심철현(성균관대학교), 김민수(성균관대학교), 김경협(성균관대학교), 최경재(성균관대학교), 양영규(성균관대학교)</td>
<td>Back gate coupling 방식을 이용한 low power consumption and wide tuning range를 갖는 Quadrature LC VCO 설계</td>
</tr>
<tr>
<td></td>
<td>15:00-15:15</td>
<td>남병채(한양대학교), 김경동(한일대학교)</td>
<td>Highly efficient Envelope Tracking Transmitter for Base Station</td>
</tr>
<tr>
<td></td>
<td>15:15-15:50</td>
<td>손정훈(포항공과대학교), 김정준(포항공과대학교), 지승훈(포항공과대학교), 정성현(포항공과대학교), 김범진(포항공과대학교)</td>
<td>Saturated Doherty Power Amplifier for 3.5–GHz WiMAX</td>
</tr>
<tr>
<td></td>
<td>15:50-17:35</td>
<td>남성욱 교수 (서울대) / 김문일 교수 (고려대)</td>
<td>-</td>
</tr>
</tbody>
</table>

Coffee Break
A Reconfigurable CMOS Front-End

김병준, 최정희, 송레훈, 장지영, 남상욱
서울대학교 전자컴퓨터공학부
bjkim@seu.ac.kr

I. 서론

다양한 무선통신기술이 발전하면서 각종 wireless communication standard가 급속도로 늘어나고 있다. 또한 전자학의 많은 장비들은 이러한 다양한 standard을 지원하고 있다.

단가를 낮추기 위해 다양한 standard을 지원할 수 있는 하나의 단일한 chip을 만드는 연구들이 진행되고 있다. 이 논문에서는 이린 chip 구현의 해결책 중 하나로써 협력으로 신호를 처리하려는 주파수로 중심주파수를 조절할 수 있는 새로운 구조를 제안하고 있다.

II. 본론

제안하는 구조는 그림 1과 같다. 트랜지스터 M1, M2, M3, M4, M5, R1, R2, C1, C2를 그림과 같이 배치하면 경제적 저항을 증폭기의 붕괴가 나타난다[1]. 트랜지스터 M6, M7, R3, C4, C5, L1은 중심주파수의 신호를 증폭하는 역할을 한다. L1은 그림 2와 같이 active inductor로 구현하여 inductance를 조절할 수 있게 하였다[2].

그림 1과 같은 구조의 특성을 구현하여 실용화될 한 결과가 그림 3이다. L1의 값을 바꿔주면 중심주파수가 변화하는 것을 볼 수 있다. 변화하는 주파수 구간에서 input matching이 잘 될 것을 확인할 수 있다.

그림 3. 입력과 input matching에 관한 시뮬레이션

III. 결론

본 논문에 제안된 구조를 사용하면 협력적 신호를 처리하려고 필요에 의해 중심주파수를 조절할 수 있는 사용을 시뮬레이션 결과를 통해 알 수 있다.

Acknowledgement

이 논문은 2007년도 정부(과학기술부)의 재원으로 한국과학기술원의 국가준임연구사업으로 수행된 연구(No. ROA-2007-000-20118-0(2007))

참고문헌
