Size reduction of microstrip-fed slot antenna by inductive and capacitive loading

*Gil-Young Lee, Yonghoon Kim, Jong-Sik Lim, and Sangwook Nam
School of Electrical Engineering and Computer Science, Seoul National University, shilim-dong, Kwanak-gu, Seoul 151-742, Korea
Email: sunset@inmac3.snu.ac.kr

1. Introduction
Microstrip-fed slot antennas are useful in broad range of applications owing to their low profile, low cost, light weight, and ease of integration with other active components. Especially, there has been considerable interest in developing compact slot antennas for mobile communication systems. There are several techniques that can be used to reduce the size of slot antennas. Including: use of capacitive loading [1], inductive loading [2], increase of the electrical length [3], and change of antenna's topology [4]. However, the first two reactive loading techniques have a little effect on the size reduction, and the other techniques have a relatively small bandwidth.

In this paper, we present new structures of slot antenna with capacitive loading and inductive loading simultaneously. One of designs has 52.9% size reduction of slot length compared to the conventional slot antenna and 2.8% impedance bandwidth.

2. Antenna design and Theory
The proposed antenna structures are shown in Fig. 1. Dumbbell shape of slot provides an inductive loading effect \(\Delta L \) at the edge of the slot, and interdigital capacitor shape (type A) or cantilever shape (type B) of center of slot provides a capacitive loading effect \(\Delta C \).

Larger inductive loading is obtained by increase of the dumbbell length \((D) \) and width \((V) \), and larger capacitive loading is obtained by decrease of \(G, W, H \) and increase of \(U \) with some limit.

Since the equivalent circuit taken at the center of the slot antenna is represented parallel resonant circuit as shown in Fig. 2, the resonant frequency is determined by the equivalent \(L \) and \(C \). Therefore, larger \(D, V, U \) and smaller \(G, W, H \) result in larger equivalent \(L, C \), and lower resonant frequency.

The duroid 5880 substrate with the dielectric constant of 2.2 and thickness of 31mils has been used. The slot length \((L) \), and width \((S) \) are fixed by 13mm and 1mm respectively, and the dumbbell length \((D) \), and width \((V) \) are fixed 5mm for the comparison of the resonant frequency for each design.

3. Results
To verify the effects of the proposed structures on the size reduction and antenna performances, input return losses and radiation patterns are simulated...
using CST MWS and Ensemble, measured, and compared to conventional slot
antenna.
Table 1 compares the resonant frequency, bandwidth, and size reduction
rates of the conventional slot antenna, dumbbell shape slot antenna, and
proposed antennas. The size reduction rates are calculated by decrease rates
of resonant frequency. In general, the inter-digital capacitor has a smaller
capacitance compared with overlay capacitor. Therefore, type B antenna has a
more size reduction rate than type A.

The simulated and measured antenna input return losses and radiation
patterns are shown in Fig. 3 and Fig. 4. The measured return loss agrees well
with the simulated result, and the radiation patterns are similar to the
conventional one along the E-plane and H-plane.

4. Conclusion
New structures of size-reduced slot antenna have been proposed. By using
the inductive and capacitive loading, one of the proposed antennas has been
reduced the length of slot by 52.9% and had 10dB bandwidth of 2.8% with the
same radiation pattern as the conventional slot antenna. These antennas can
be modified to a frequency tunable slot antenna by using the variable capacitor
or tunable capacitor using MEMS process.

5. Acknowledgement
This work was supported by KOSEF under the ERC program through the MINT
research center at Dongguk University, Seoul, Korea.

References
ID-card’ 1992 Asia Pacific Microwave Conf. Proceedings, vol. 1, 1992, pp. 141-
144

2. BRADLEY G. PORTER, and STEVEN S. GEARHART : ‘Impedance and
polarization characteristics of H and IHI slot antennas’, IEEE Trans. Antennas

3. JUNG-MIN KIM, KUN-WOOK KIM, JONG-GWAN YOOK, and HAN-KYU

4. REZA AZADEGAN, and KAMAL SARABANDI : ‘Miniaturized folded-slot: An
approach to increase the bandwidth and efficiency of miniaturized slot
antennas’, Antennas and Propagation society, 2002 IEEE international sym.,
vol. 4, 2002, pp. 14-17
Fig. 1 Structures of the proposed antennas

(a) type A

(b) type B

Fig. 2 Equivalent circuit of the center-fed slot

Table 1. Comparison of measured antenna performances

<table>
<thead>
<tr>
<th>Antenna type</th>
<th>Resonant frequency (GHz)</th>
<th>10dB Bandwidth (%)</th>
<th>Size reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>7.98</td>
<td>4.8</td>
<td>-</td>
</tr>
<tr>
<td>Dumbbell shape</td>
<td>5.86</td>
<td>4.8</td>
<td>26.6</td>
</tr>
<tr>
<td>Type A</td>
<td>4.72</td>
<td>2.9</td>
<td>40.9</td>
</tr>
<tr>
<td>Type B</td>
<td>3.76</td>
<td>2.8</td>
<td>52.9</td>
</tr>
</tbody>
</table>
Fig. 3 Input return losses

- Conventional slot, simulated
- Dumbbells shape slot, simulated
- Type A, simulated
- Type B, simulated
- Conventional slot, measured
- Dumbbells shape slot, measured
- Type A, measured
- Type B, measured

Fig. 4 Radiation patterns

(a) type A
(b) type B

- E-plane patterns, simulated
- E-plane patterns, measured
- H-plane patterns, simulated
- H-plane patterns, measured