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Abstract: The Method of Auxiliary Sources (MAS) has been used successfully for the numerical solution of a 
variety of electromagnetic problems, especially in frequency domain. There have been little efforts to apply 
MAS for time domain analysis. And the published articles take the explicit scheme for the marching-on-in-time 
(MOT) procedure, so the results suffer from the late-time instability. In this paper, we present the implicit 
scheme for the stable MOT procedure. 
 
 

1. INTRODUCTION 
The Method of Auxiliary Sources (MAS) is an 

efficient numerical technique for the solution of the 
boundary value problems arising in electromagnetic 
analysis [1]. MAS was introduced, named, and 
developed by a research group in Georgia (part of the 
former Soviet Union) [2]. Diverse research groups 
have independently developed very similar methods 
under different names [3]-[5]. Reference [1] 
introduces various aspects of MAS including 
historical perspectives, fundamentals of the method, 
and current status of the research activities, hence 
interested readers are referred to that article. 
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Fig. 1a. A PEC scatterer illuminated by an incident wave.

To explain the basic idea behind MAS, a simple 
two dimensional scattering problem in frequency 
domain is presented first. Solution procedures of 
MAS are demonstrated against that of the standard 
surface integral equation technique (SIE). 

Fig. 1a shows the problem geometry. There is a 
perfect electrically conducting (PEC) scatterer and it 
is illuminated by an incident plane wave. In the 
standard SIE, the unknown currents (chosen current 
bases with unknown coefficients) are distributed on 
the scatterer surface. Then these unknown 
coefficients are solved for using the Method of 
Moments (MoM) [6]. In contrast to this, when 
applying MAS, discrete Auxiliary Sources (ASs) are 
located on the auxiliary surface enclosed by the 
physical scatterer surface, as shown in Fig. 1b. This 
auxiliary surface is usually conformal to the physical 
scatterer surface, but not necessarily is. Then the 
problem is solved imposing the boundary condition 
that the tangential electric field vanishes at the 
physical scatterer surface in the same way as the 
standard SIE. When the solution is completed, the 
coefficients of ASs are obtained, and then the needed 
quantities such as the surface currents and the radar 
cross section (RCS) can be calculated using these 
values. The coefficients of ASs themselves do not 
have physical significance. 

In summary, MAS adopos the discrete sources 
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Fig. 1b.  MAS model equivalent to the situation in Fig. 1a.
cated in the inside of the physical scatterer and 
istant from the surface. Therefore the numerical 
tegrations and singularity extractions are not 

eeded, hence the numerical procedure is more 
mple and efficient than that of the standard SIE. All 
e advantages of MAS in frequency domain are 

irectly applicable to MAS in time domain. 
 

2. MAS IN TIME DOMAIN 
Before we start the discussion of MAS in time 

omain, brief review of the Time Domain Integral 
quation (TDIE) method seems to be in order. In 
cent years, TDIE for scattering analysis has 
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received much attention and is believed to be in a 
mature stage, although a few problems concerning 
stability and accuracy still remain. The most widely 
used scheme is to discretize the scatterer with 
triangular patches and perform Marching-on-in-Time 
(MOT) with Rao-Wilton-Glisson (RWG) basis 
function in space and linear interpolation in time. In 
this scheme, basis functions for space and time are 
decoupled to avoid time-consuming space-time 
integrations and the retarded time is accounted for 
only approximately. 

Since MAS adopts the discrete impulsive ASs, 
space-time integrations are not needed and the 
retarded time can be accounted for accurately. This is 
the advantage of MAS in time domain over the 
standard SIE based TDIE. 

Fig. 2a. AS points and observation points 

But, there have been little efforts to apply MAS in 
time domain and the published articles take the 
explicit scheme for the MOT procedure [7]. As is 
widely known, the explicit MOT scheme suffers from 
the late-time instability. In this paper, we present the 
implicit scheme for the MOT procedure.  

 
3. FORMULATION 

The governing equation is given by the boundary 
condition that the tangential electric fields vanish at 
the PEC surface. 
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Fig. 2b. Global time and local time at nth AS point. For two dimensional TM to z case, the electric fields 
have z component only and the scattered field can be 
represented by a summation of contributions from the 
individual ASs as 
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The electric field components can be computed using 
the vector potential using the following equation. 
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Note that the vector potentials are calculated 
considering the retarded time and )(τnf  is the time 

profile of the nth AS, which is the unknown to be 

solved for. 
We choose the integrated form of the governing 
equation (1), that is, 
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and this equation is tested at N observation points. 

For the purpose of computation, we approximate 

)(τnf  by piecewise linear function, that is, the 

summation of shifted triangular pulse function as 

given by 
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In these equation, t∆  represents the time step in 

MOT procedure and 0nt∆  represents the ascending 

time of the first pulse function. These treatment is 
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due to the fact that it takes time for the field radiated 

by the AS to arrive at the testing points and the initial 

time is set to zero as shown in Fig. 2. In Fig. 2, 
 represents the distance from the nth AS to 

the nearest test point and 
nDMIN

00 / cDMINtt nn −∆=∆ . 

From the integral representation of the vector 
potential, the needed integrations can be performed 
analytically as follows. 
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Fig. 3a. Surface currents from time domain MAS 

Fig. 3b. Behavior of the ASs 
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To use the implicit scheme for the MOT procedure, 
we can decompose the vector potential tested at the 
mth observation point at time  into three 
components as follows. 
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(11) 
The first term represents the contribution from the 
current triangular pulse whose coefficients are yet to 
be determined and the second term represents the 
contribution from the retarded pulses within the same 
spatial range as the first term and the third term 
represents the contribution from the ASs outside this 
range, respectively. Then, the governing equation can 
be cast into matrix equation as 

][)]([]][[ , βα += kkn tFa             (12) 

, where ][α  is constructed from the first terms of 

(11) and ][β  is constructed from the second and 

third terms of (11) and  is constructed from 

the incident field. Since the matrix 

)]([ ktF

][α  is computed 

only once, the computational burden is not so high. 

Above process is conceptually right for all k  but 

strictly right for  since the first pulses have 

different representation as shown in (6). 

2≥k

This constitutes the implicit MOT procedure. As is 

widely known, the time step in the explicit scheme is 

restricted by the distance of the nearest source points. 

In contrast to this, the time step in the implicit 

scheme is solely based on the high-frequency 

contents in the incident pulse, hence one needs a 

small number of time steps to obtain a specific 

duration of time domain results. 
 

4. NUMERICAL RESULTS 
To show the validity of the proposed scheme, a 

simple numerical example is presented. The problem 
under consideration is scattering by a PEC cylinder 
of radius 1m illuminated by an incident plane wave 
going in x direction. Incident plane wave has 
Gaussian transient profile given by 
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and the parameters are  and 0lmT 20= lmt 20= . 
Light meter ( ) is the time needed for the light to 
travel . Discretization density is 5 points per 
wavelength for maximum frequency under 
consideration. Fig. 3a shows the surface current from 
the proposed scheme along with that from the inverse 
Fourier transformed result. For the inverse Fourier 
transformed result, 1024 frequency samples between 
0 and 102.4 MHz were taken and the IFFT (inverse 
fast Fourier transform) was performed. The two 
results agree well and the time domain result remains 
stable. The result from the explicit MOT scheme 
suffers from the instability and is not shown here. Fig. 
3b shows the behavior of some ASs. In time domain 
MAS, coefficients of ASs are obtained first and the 
surface currents are calculated as post processing as 
mentioned before. 

lm
m1

 
5. CONCLUSIONS 

In this paper, we presented the implicit MOT 
procedure for the time domain MAS. Numerical 
results show that the proposed scheme provides 
stable results. And due to the large time step, 
computational cost is much reduced also. 
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