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PAPER

Design Optimizaion of Gm-C Filters via Geometric Programming

Minyoung YOON†a), Student Member, Byungjoon KIM†, Jintae KIM††, and Sangwook NAM†, Nonmembers

SUMMARY This paper presents a design optimization method for a
Gm-C active filter via geometric programming (GP). We first describe a
GP-compatible model of a cascaded Gm-C filter that forms a biquadratic
output transfer function. The bias, gain, bandwidth, and signal-to-noise ra-
tio (SNR) of the Gm-C filter are described in a GP-compatible way. To
further enhance the accuracy of the model, two modeling techniques are
introduced. The first, a two-step selection method, chooses whether a satu-
ration or subthreshold model should be used for each transistor in the filter
to enhance the modeling accuracy. The second, a bisection method, is ap-
plied to include non-posynomial inequalities in the filter modeling. The
presented filter model is optimized via a GP solver along with proposed
modeling techniques. The numerical experiments over wide ranges of de-
sign specifications show good agreement between model and simulation
results, with the average error for gain, bandwidth, and SNR being less
than 9.9%, 4.4%, and 14.6%, respectively.
key words: ultra-low power, optimization, geometric programming, sub-
threshold mode operation, active filter

1. Introduction

Active Filters are principal building blocks in modern radio
frequency (RF) and baseband systems. Channel select fil-
ters [1] and image-rejection filters [2] are routinely designed
using active filters. The design of an active filter has to
consider intricate tradeoffs among power, gain, bandwidth,
noise, and linearity, among others. To address such design
complexity, many design optimization methods have been
proposed. A genetic algorithm [3]–[5] has been used to op-
timize active filters, and a general matrix-based approach [6]
has been applied to design continuous-time filters. Specific
design parameters, such as dynamic range and stability, can
be optimized by various algorithms [7]–[9]. While those
papers address various challenges in an active filter design
mainly at architecture-level, the result of optimization does
not seamlessly lead to a fully optimized transistor-level filter
design.

In this paper, we present an active filter optimization
method based on geometric programming (GP), a special
kind of convex optimization that has shown viability in op-
timizing various analog circuits at all levels of design hier-
archies [10]–[13]. Our specific focus is the design optimiza-
tion of a Gm-C biquad cell using two integrators [14]. Since
the biquad cell is a key building block in any filter design,
our method can be easily extended to higher order active
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filter designs. Compared to recently published active filter
optimization work via GP in [15], our work focusses on pre-
senting new modeling and optimization techniques that en-
able a fully-optimized transistor-level filter design, while the
work in [15] emphasizes more on high-level design explo-
rations with no actual circuit-level simulations/verifications.

Applying GP-based circuit optimization to the active
filter design entails several inherent challenges. In this work,
we focus on addressing two such challenges: 1) finding opti-
mal biasing for individual transistors and 2) including mod-
eling constraints that are not natively compatible with GP. In
1), conventional GP-based optimization assumes that tran-
sistors in a circuit are in the saturation region [10]. While
this is a reasonable assumption in most cases, biasing tran-
sistors at the subthreshold region can often lead to signifi-
cant power reduction due to high gm/ID which is transcon-
ductor efficiency. Transistors in the subthreshold region ex-
hibit lower fT compared with those in the saturation region;
however, low fT in the nanometer CMOS process can still
be beyond multi-GHz, which is acceptable for many exist-
ing RF systems. At the same time, biasing every transis-
tor at the subthreshold region in a given circuit structure
would not necessarily yield a globally-optimal design. In
this work, we embed a gm/ID-based selection algorithm in
the GP-optimization so that a proper device operating region
can be automatically and individually selected for transis-
tors in a given circuit structure. This method helps improve
the accuracy of the optimized design when low-power dis-
sipation is the critical design metric. In 2), GP-based opti-
mization requires that the circuit models must fit into spe-
cific functional forms, known as posynoimal inequality and
monomial equality. For the active filter optimization, a key
noise model equation is fundamentally not in posynomial
form, which in general can’t be handled via GP. To address
this issue, we propose a designer-guided iterative method
via a bisection algorithm, thereby including non-posynomial
functions in the circuit models. While demonstrated only for
noise model constraint in this work, the presented technique
is general and therefore can be extended to handle other non-
posynomial models in GP-based circuit optimization.

This paper is organized as follows. GP-based optimiza-
tion is reviewed in Sect. 2. Section 3 presents active fil-
ter modeling for GP optimization. The target application
of our filter design is low-energy RF transceivers, such as
Bluetooth LE and IEEE 802.15.4q. Section 4 describes
the proposed gm/ID-based selection algorithm and bisec-
tion algorithm to incorporate the non-posynomial model.
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Numerical results are shown in Sect. 5. Section 6 concludes
the paper with a brief summary.

2. Review of GP-Based Optimization

Geometric programming is an optimization problem that
can be transformed into a convex problem. Being a global
optimization, an initial value for the solution is not nec-
essary to find a globally optimal solution. Two types of
functions are used in GP, namely monomial and posynomial
functions. They have the following forms

f (x1, x2, · · · , xn) =
K∑

k=1

ck xα1k

1 xα2k

2 · · · xαnk

2 (1)

where ck � 0 and αnk ∈ R. When K = 1, f is called a mono-
mial function; otherwise, f is a posynomial function, which
essentially is a sum of the monomial functions. GP is an op-
timization problem that has a posynomial objective function
of design variables xi with a set of posynomial inequality
constraints and monomial equality constraints:

minimize f0(x) (2)

subject to fi(x) ≤ 1, i = 1, · · · ,m (3)

gi(x) = 1, i = 1, · · · , p (4)

xi > 0, i = 1, · · · , n. (5)

By the logarithmic transformation of both variable xi in
(5) and the constraint and objective functions in (2), and
(3)∼(4), the GP problem can be solved as a convex program-
ming problem; therefore, it can be efficiently solved using an

Table 1 Several characteristics of various optimization methods.

interior point method [16]. Note that the obtained solution is
guaranteed to be globally optimum due to the fundamental
nature of convex optimization.

Table 1 shows several characteristics of various opti-
mization methods for comparison of GP and other optimiza-
tion techniques. The advantages of GP are its shorter op-
timization time and the availability of transistor-level and
high-level optimization. Despite the high modeling effort
required, GP has the significant advantage that it can ana-
lyze various design tradeoffs, as shown in Sect. 5.

3. Active Filter Modeling

3.1 Device Modeling

To build a circuit model in a GP-compatible way, a process-
dependent device model is needed. We create either mono-
mial or posynomial functions of small signal parameters and
bias voltages based on a convex piecewise-linear function
fitting [17]. Data points obtained from DC sweep simula-
tions in the foundry 65 nm-CMOS process are used. To
assess the feasibility of including the subthreshold region
into GP optimization, we generated both saturation and sub-
threshold mode models. The resulting device models are
listed in Appendix. Table 2 shows mean/max percentage
fitting errors (|(yGPmodel − ysimul)/ysimul| · 100) of the key de-
vice models. The device models are functions of width W,
length L, drain current IDS, and VDS. The range of the sweep
simulation for L and VDS are from 60 nm to 2 μm and from
50 mV to 350 mV, respectively. We assume a multi-finger
transistor structure with a fixed finger width W = 120 nm.
The comparison in Table 2 reveals that although the sub-
threshold model has a slightly higher modeling error due
to its inherent exponential ID-VGS behavior, the model still
shows reasonably good accuracy, leading us to conclude
that including the subthreshold model into the GP opti-
mization would not significantly degrade the quality of the

Table 2 Mean/Max % modeling errors in NMOS devices.
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Fig. 1 Second-order active filter schematic.

optimization result. The design optimization method to se-
lect the proper operational region is presented in Sect. 4.

3.2 Circuit Modeling

The specific active filter we consider is shown in Fig. 1. The
filter is essentially a cascade of two Gm-C stages with feed-
back to yield a single-ended biquadratic output. The first
stage is a differential pair with an active current mirror fol-
lowed by a source follower in the second stage. Our target
application is a Bluetooth low-energy system where mini-
mum energy is the most critical design goal.

1) Bias Model: To keep short channel devices in satu-
ration, the following posynomial inequality is required:

(VDSAT + ΔVDSAT ,min) · V−1
DS ≤ 1 (6)

where ΔVDSAT ,min is the preset margin to prevent devices
from operation in the triode region. A ΔVDSAT ,min of 10 mV
is used in this design optimization. We impose (6) for every
transistor in Fig. 1. With VDSAT being a model parameter in
Table 2, (6) is a posynomial inequality with a design vari-
able VDS.

We also impose an upper bound on the current effi-
ciency as a posynomial inequality as

gm · I−1
DS · η−1

max ≤ 1 (7)

p where ηmax is the maximum current efficiency or
(gm/IDS)max. In modern processes, ηmax is typically around
25 which is limited by gm/IDS in subthreshold region. In our
model, we used ηmax = 35 to explicitly detect the devices
that are only limited by gm/IDS condition. As presented later
in this paper, constraint (7) is used as a criterion in selecting
devices in the subthreshold mode.

The matching constraints of a differential topology are
modeled by the following five monomial equalities:

W1 = W3, L1 = L3, W4 = W5, L4 = L5, L6 = L7 (8)

where W and L of each transistor are variables of the design
optimization.

The circuit topology shown in Fig. 1 specifies
Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law

(KVL) for node voltage and branch current, respectively, as

2 · IDS1,3,4,5 = IDS6, IDS2 = IDS7 (9)

|VGS4|+VDS3+VDS6 ≤ VDD, VGS3+VDS6 ≤ VIN,CM (10)

VDS2 + VDS7 ≤ VDD (11)

|VDS5| + VGS2 + VGS1 + VDS6 ≤ VDD (12)

where VIN,CM is the input common mode at the gate of M3.
KCL and current mirrors are expressed in (9). Inequality
(10) constrains the bias voltage of the differential pair by
KVL, and inequality (11) constrains the possible range of
the drain-source voltages for M2 and M7. Inequality (12) is
a critical constraint that includes four bias voltages within
VDD. In this paper, we use VDD = 0.6V to reduce power
dissipation. Therefore, with two gate-source voltages be-
tween the rails, the bias constraint in (12) is hard to satisfy.
To reliably find a feasible bias condition and avoid potential
current mismatch between ID4 and ID5 in the steady state,
we impose extra bias constraints as

VGS5 ≤ VGS5 max, VDSAT5 ≤ VDSAT5 max (13)

where a VGS5 max of 250 mV and a VDSAT5 max of 100 mV
are used in this optimization. These constraints guarantee
that M5 stays away from the triode region with a sufficient
voltage margin.

2) Gain and Bandwidth Model: The second-order filter
we consider in Fig. 1 has two poles within the feedback loop.
The resulting closed-loop biquadratic transfer function can
be modeled using quality factor Q and peaking frequency
fn. When open-loop transfer function H(s)|open is given by

H(s)|open =
Av

(1 + s/ω1)(1 + s/ω2)
(14)

where Av is the DC gain and ω1 and ω2 are pole frequencies,
the closed-loop transfer function can be expressed as

H(s)|closed =
H(s)|open

1 + H(s)|open

=
ω1ω2Av

s2 + (ω1 + ω2)s + ω1ω2 + ω1ω2Av
. (15)

One can easily show that fn and Q in (15) are expressed as

fn =
√
ω1ω2 + ω1ω2Av/2π (16)

Q = ωn/(ω1 + ω2) (17)

The Av, ω1, and ω2 of the filter circuit shown in Fig. 1 can
be found as

Av = gm1,3/(gds1 + gds5) (18)

ω1 = (gds1 + gds5)/CM , ω2 = (gm2 + gds7)/COUT (19)

where CM and COUT are the total capacitors at the M and
output nodes, respectively,

CM = C1 +Cgd1 +Cgd2 +Cgd5 +Cjd1 +Cjd5 (20)

COUT = C2 +Cgs1 + (1 + gm1rO1)Cgd1 +Cgd7

+Cjs2 +Cjd7. (21)



410
IEICE TRANS. ELECTRON., VOL.E100–C, NO.4 APRIL 2017

By combining (20) and (21) with (16) and (17), one can
express fn and Q as

fn =
√

(gm1+gds1+gds5)(gm2+gds7)/4π2CMCOUT (22)

Q =

√
(gm1+gds1+gds5)(gm2+gds7)/CMCOUT

(gds1+gds5)/CM+(gm2+gds7)/COUT
. (23)

When Q is reasonably high, the gain at the peaking fre-
quency can be approximated as the product of the closed
loop DC gain Av,closed and the quality factor Q as

Gain = Av,closed · Q (24)

where Av,closed ≈ 1 with unity-gain feedback in Fig. 1. Thus,
if we choose the peaking frequency as the signal frequency,
Q in (23) becomes simply the gain at the signal frequency.
To impose gain and bandwidth constraints, we make a few
approximations as

gm1 � gds1,5, gm2 � gds7, CM ≈ C1, COUT ≈ C2. (25)

With (25), the inverse of (22) and (23) squared can be used
in posynomial inequalities as

f 2
n,min

f 2
n
= f 2

n,min ·
(2π)2CMCOUT

gm1gm2
≤ 1 (26)

Gain2
min

Gain2

= Gain2
min ·
{CM(gm2 + gds7) +COUT (gds1 + gds5)}2

C1C2gm1gm2
≤ 1

(27)

where fn,min and Gainmin are lower bounds that are used in
setting the specifications of the design optimization.

3) Noise Model: Noise performance is a key perfor-
mance specification in any filter design. The total integrated
noise power at output in a second-order system can be ex-
pressed for a given bandwidth and quality factors [18] as

Pnoise,out = V2
n,0 ·
π

2
· fn · Q (28)

where Vn,0 is the DC noise power spectral density at input.
In our filter circuit in Fig. 1, Vn,0 is given by

V2
n,0 = 4kTγ(gm3 + gm4)/gm3

2 + 4kTγ(gm1 + gm5)/gm1
2

(29)

where noise factor γ is a thermal noise coefficient of the
transistor. Ideally, γ has a value of 2/3, but it has been re-
ported that experimental measurements show γ ≈ 1 in a
submicron CMOS process and γ depends also on channel
length and bias voltage [19]. In our optimization, we con-
sider such effects by creating a monomial model of γ as a
function of L and IDS/W as

γ = a · Lb · (IDS/W)c = 0.7656 · L−0.0063 · (IDS/W)0.0312

(30)

which is generated by noise sweep simulations and model

fitting in a foundry 65nm CMOS technology. The modeling
error of γ is less than 8%. This approach enables us to op-
timize the noise performance of the filter while considering
the dependence of γ on channel length and bias voltage.

Signal-to-noise ratio (SNR) at the filter output can be
constrained as

SNRout,min ≤ SNRout = Psig,out/Pnoise,out (31)

Psig,out = A2
v,closed · V2

in,peak/2 (32)

where SNRout,min and Vin,peak can be determined from design
specifications according to the applications. In our case, we
assume that this filter is used as part of the image rejection
filter in a Bluetooth low energy (LE) receiver. Bluetooth
LE specifies the input sensitivity of −90 dBm and a bit er-
ror rate (BER) of 0.1%. To achieve a BER of 0.1% in the
Gaussian minimum shift keying (GMSK) modulation
scheme, an SNR of 10 dB is required in view of the total
system. In this paper, we assume that an SNRout,min of 15
dB is required at the filter block. Considering an input sen-
sitivity of −90 dBm with receiver blocks before a filter, such
as low-noise amplifier (LNA), an IQ generator, and buffer
of the mixer, we can determine the magnitude of Vin,peak. In
this paper, we use Vin,peak = 1.26 mV considering an LNA
gain of 27 dB, an IQ generator gain of 3 dB, and a buffer
gain of 12 dB. By combining the SNR constraint and noise
equations, one can impose the overall SNR constraint as

2 · SNRout,min

V2
in,peak · 4

{
4kTγ(gm3 + gm4)

gm3
2

+
4kTγ(gm1 + gm5)

gm1
2

}

× gm2(gm1 + gds1 + gds5)
gm2C1 + (gds1 + gds5)C2

≤ 1 (33)

which is not a posynomial inequality since the denominator
has multiple terms. An algorithm to address this issue is
presented later in Sect. 4.

4) Other Constraints: There are several other impor-
tant design constraints that in general need to be included
in active filter designs. These are not included in our model
but can be added if the design specification changes.

· Stability: Phase margin of the feedback amplifier is di-
rectly related to the quality factor of the closed-loop
system. Therefore, to specify certain phase margins,
we can impose an upper bound on the quality factor.
· Linearity: Imposing active filter nonlinearity in a GP-

compatible form is not straightforward, but one can in-
directly specify the output linearity constraint of the fil-
ter by imposing a lower bound on the open-loop gain
of the feed-forward amplifier [20].
· Area: Since the area of the filter is dominated by

transistors and capacitors, area constraints can be ex-
pressed as a posynomial function as

A = k ·
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

Wi · Li +Ccap/C0

⎞⎟⎟⎟⎟⎟⎠ (34)

where the sum of width-length products of transistors is



YOON et al.: DESIGN OPTIMIZAION OF GM-C FILTERS VIA GEOMETRIC PROGRAMMING
411

the total active area, Ccap is the total metal capacitance
value, and C0 is the capacitance value per unit area. k
is an experimental fuzzy factor to include signal and
supply routing overhead in an actual layout.
· Signal Swing: Headroom constraint can be modeled by

adding extra term Vswing to (10)-(12) in the bias model.
Since the output voltage swing of the filter is very small
in our case, we do not have Vswing in the model. As de-
scribed earlier in Sect. 3, the voltage swing is 1.26 mV
at the filter output in our case, which can be neglected
in the design optimization.

4. Device Selection/Bisection Method

4.1 Subthreshold Device Selection

As discussed earlier in the paper, biasing transistors in the
subthreshold region can lead to significant power benefits.
Since all transistors need not operate in the subthreshold re-
gion, the algorithm should selectively choose optimal bias-
ing for each transistor individually. Figure 2 shows our two-
step subthreshold device selection algorithm. For the conve-
nience of discussion, type-A devices use the device models
extracted for the saturation mode, while type-B is the one for
the subthreshold mode. As a first-pass optimization, we be-
gin nominal GP optimization assuming all devices are type-
A. To find out which devices are required to be replaced by
a type-B model, we check the current efficiency gm/IDS of
every transistor obtained from the first-pass optimization. If
the upper bound imposed on gm/IDS in (7) turns out to be
active for a certain transistor, we interpret this as an indica-
tion that biasing the particular transistor at the subthreshold
region can lead to improvement in the optimization result.
After substituting such devices with the type-B model, we
perform second-pass optimization to obtain better optimal
results using both type-A and type-B device models. This
simple two-step approach significantly improves the accu-
racy of the optimization result, as shown later in this paper.

Fig. 2 Subthreshold device selection algorithm.

4.2 Bisection Method for Non-Posynomial Constraints

Non-posynomial constraints can occur in creating circuit
models as exemplified in (33). A numerical technique is
required to incorporate non-posynomial equations into a GP
framework. We present a simple bisection method to ad-
dress this issue, which is illustrated in Fig. 3. In our specific
example, the problem in (33) is that the denominator terms

gm2C1 + (gds1 + gds5)C2 (35)

cannot be simply approximated as a monomial. To begin it-
eration, we first assume equal output conductance gds1 and
gds5 to simplify (35) as gm2C1 + 2gds1C2. Afterwards, we
find the ratio between the two terms gm2C1 and 2gds1C2

through iterations using the bisection method, which is also
known as the binary search method. To reach the final value
within a reasonable number of iterations, a realistic range
of the feasible ratio must be determined before the itera-
tion begins. We note from the circuit structure in Fig. 1
that gm2C1/2gds1C2 is essentially ω2/ω1 in (19), which is
the ratio of two poles. We will refer to this term as pole
proximity. Since the first pole ω1 and the second pole ω2

are located relatively close in this design optimization, we
assume that the pole proximity gm2C1/2gds1C2 may have a
value between 0 and 2. The initial value of the pole prox-
imity at the beginning of the algorithm is set at the middle
of the feasible range. We then perform a series of GP opti-
mizations to find the estimated optimal pole proximity value
by narrowing down the search domain. In each iteration, the
domain of the search is halved by comparing the pole prox-
imity values from the optimization result and the estimated
proximity value. Iteration is completed if the error from the
comparison becomes less than 1%, which indicates the non-
posynomial problem is solved properly.

Fig. 3 Iterative optimization flow through bisection method.
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5. Numerical Results and Discussion

5.1 Second-Order Filter Design Optimization

The Gm-C biquad shown in Fig. 1 is designed via GP-based
optimization with the target design specification shown in
Table 3. The resulting design was verified by Spectre sim-
ulations. Table 3 summarizes the comparison between the
optimization results and the Spectre simulation. The speci-
fication of fn is 2 MHz, which is the bandwidth of the low-
pass filter with attenuation of 40 dB/decade. The SNR spec-
ification is 15 dB as required at the filter block from the
system SNR budget. The actual optimization model is writ-
ten and optimized using CVX, a convex optimization pack-
age for MATLAB [21]. For a given design specification, the
optimized transistor-level filter consumes 0.62 μW. Errors
between the optimization results and the simulation are less
than 5% for all design specifications, indicating that the pro-
posed GP-based optimization is performed with reasonably
good accuracy.

To highlight the benefit of the optimal subthresh-
old/saturation mode selection, we compare the results from
the first-pass (using the Type-A device in Fig. 2) and second-
pass optimization (using Type-A and Type-B devices), as
described in Sect. 4-A. It turns out that the second-pass op-
timization opts for the subthreshold mode for transistors M1,
M2, and M3. The comparison in Table 4 indicates that the
modeling accuracy is considerably improved in the second-
pass optimization; here, the error refers to the deviation be-
tween the optimization result and the Spectre simulation.
Two data points at fn � 1 MHz and fn � 2 MHz are shown to
compare the errors. As evident from Table 4, the errors from
the first-pass optimization without the subthreshold mode
device model are significantly higher than the second-pass
optimization in all performance metrics, such as gain, fn,
and SNR. Table 4 also reveals that such errors are the direct
consequence of the inaccuracy in estimating small-signal
parameters, such as gm and gds. On the other hand, the error
in the small-signal parameters in the second-pass optimiza-
tion result is reasonably small in all performance metrics.
Therefore, it can be said that the proposed two-step sub-
threshold/saturation selection algorithm helps enhance the
accuracy of optimization.

The feasibility of the bisection algorithm presented in

Table 3 GP Optimization result and Simulation for proposed optimiza-
tion.

Sect. 4-B has also been verified. Our target is to find an ac-
curate final value of the term (gm2C1/2gds1C2) in (35). A
graphical illustration using a numerical example is shown
in Fig. 4. In the first iteration, the pole proximity value that
we use in the optimization is 1 (denoted as a blue square).
After the first-pass optimization, the actual proximity value
obtained from the simulation is 0.56 (denoted as a red trian-
gle), which is less than our estimated pole proximity value
of 1. Since the actual value obtained from the optimization
is lower than the middle of the feasible region, we update
the expected pole proximity value to be in the middle of the
lower bound of the feasible range (= 0) and the expected
value used in the prior iteration (= 1), leading us to use 0.5
as the expected pole proximity value in the second-pass op-
timization. The sequential GP optimizations continue un-
til both the expected value and the actual optimization re-
sult converge to a given error tolerance. In the case of our
SNR optimization for the active filter design, the error be-
comes less than 1% when the number of iterations is beyond
7. By adopting this bisection method, the non-posynomial

Table 4 Error between optimization result and spectre simulation.

Fig. 4 Expected pole proximity and calculated pole proximity from op-
timization according to the number of iterations N through the bisection
method and the absolute value of the error.
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Fig. 5 SNR versus power consumption from GP optimization and the
simulation and absolute value of the error between GP and the simulation
for gain and fn.

Fig. 6 fn versus power consumption from the GP optimization and the
simulation and the absolute value of the error between the GP and the sim-
ulation for gain and SNR.

constraint can be incorporated in the GP framework.

5.2 Power-Performance Tradeoff Analysis

Design optimization can provide useful power performance
tradeoffs that can help guide system-level design optimiza-
tion. For instance, Fig. 5 shows the GP optimization and
simulation results of power dissipation while varying the
SNR specification in the optimization. As the SNR require-
ment increases, it can be seen that the power consump-
tion rises. It is interesting to note that the power cost to
increase the SNR is mild when the SNR specification is
less than 11 dB, while the power cost to increase the SNR
becomes much larger when the SNR requirement exceeds
11 dB. Also, Fig. 5 reveals that the absolute values of the
error between the simulation and the optimization at each
data point indicate that our filter model has reasonably good
accuracy. More specifically, average errors of the gain and
fn are 10.6% and 4.4%, respectively. The sensitivity of the
total power on the SNR requirement can be leveraged to op-
timally assign power and noise budgets in the RF receiver

design.
Another example of power-performance tradeoffs is

shown in Fig. 6. Since fn represents the bandwidth of the fil-
ter, Fig. 6 illustrates the power-bandwidth tradeoff. As the fn
requirement increases, it can also be seen that the power dis-
sipation rises. Optimization accuracy is maintained at each
data point. In this experiment, average errors of the gain and
SNR are 9.9% and 14.6%, respectively, indicating a good
numerical accuracy of the optimization model is maintained
over wide ranges of design specifications.

Table 3 shows several characteristics of many opti-
mization methods to compare GP and the other optimiza-
tion technique. Advantages of GP are optimization time and
availability of transistor level and high-level optimization.
In spite of high modeling effort, GP has significant advan-
tage that can analyze various design tradeoff as it is shown
in Sect. 5.

6. Conclusions

In this paper, we proposed an active-filter optimiza-
tion method via geometric programming. The presented
equation-based active filter model along with new model-
ing techniques are shown to efficiently optimize a transistor-
level active filter for a given design specification. The
two-step selection method for choosing the saturation and
subthreshold modes has been proposed to enhance the ac-
curacy of the optimization result for low-power designs.
A bisection method has been applied to incorporate non-
posynomial constraints in the GP optimization. The nu-
merical experiments to validate the proposed modeling tech-
niques show that the optimized designs achieve good accu-
racy over wide ranges of design specifications. Additionally,
our optimization method can efficiently explore the optimal
power-performance tradeoffs of an active filter, which can
be very useful in deciding the block-level power budget in
an RF system design.
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Appendix:

In device modeling, either monomial or posynomial func-
tions of small-signal parameters and bias voltages based on a
convex piecewise-linear function fitting are created. Mono-
mial models of several parameters in Table 2 are expressed
as:

M1 gmmon = M1 m · α1

· (M1 l)β1(M1 id)γ1(M1 vds)δ1,

M1 gdsmon = M1 m · α2

· (M1 l)β2(M1 id)γ2(M1 vds)δ2,

M1 vgsmon = 1 · α3 · (M1 l)β3(M1 id)γ3(M1 vds)δ3,

M1 vthmon = 1 · α4 · (M1 l)β4(M1 id)γ4(M1 vds)δ4

M1 cgsmon = M1 m · α5 · (M1 l)β5(M1 id)γ5

M4 gmmon = M4 m · α6

· (M4 l)β6(M4 id)γ6(M4 vds)δ6,

M4 gdsmon = M4 m · α7

· (M4 l)β7(M4 id)γ7(M4 vds)δ7,

M4 vgsmon = 1 · α8 · (M4 l)β8(M4 id)γ8(M4 vds)δ8,

M4 vthmon = 1 · α9 · (M4 l)β9(M4 id)γ9(M4 vds)δ9,

M4 cgsmon = M4 m · α10 · (M4 l)β10(M4 id)γ10,

M6 gmmon = M6 m · α11

· (M6 l)β11(M6 id)γ11(M6 vds)δ11,

M6 gdsmon = M6 m · α12

· (M6 l)β12(M6 id)γ12(M6 vds)δ12,

M6 vgsmon = 1·α13 ·(M6 l)β13(M6 id)γ13(M6 vds)δ13,

M6 vthmon = 1·α14 ·(M6 l)β14(M6 id)γ14(M6 vds)δ14,

M6 cgsmon = M6 m · α15 · (M6 l)β15(M6 id)γ15,

where α1 = 5.56, β1 = −0.023, γ1 = 0.93, δ1 = 0.0095,
α2 = 0.0043, β2 = −0.26, γ2 = 0.94, δ2 = −0.63, α3 = 8.19,
β3 = −0.053, γ3 = 0.31, δ3 = −0.103, α4 = 0.0061,
β4 = −0.24, γ4 = 2.88·10−05, δ4 = −0.033, α5 = 1.03·10−07,
β5 = 1.12, γ5 = 0.17, α6 = 5.56, β6 = −0.023, γ6 = 0.93,
δ6 = 0.0095, α7 = 0.0043, β7 = −0.26, γ7 = 0.94, δ7 =
−0.63, α8 = 8.19, β8 = −0.053, γ8 = 0.31, δ8 = −0.103,
α9 = 0.02, β9 = −0.16, γ9 = 5.09 · 10−05, δ9 = −0.0047,
α10 = 1.15 · 10−08, β10 = 1.06, γ10 = 0.082, α11 = 0.0012,
β11 = −0.3, γ11 = 0.64, δ11 = 0.083, α12 = 0.00035,
β12 = −0.34, γ12 = 0.87, δ12 = −0.85, α13 = 34.27,
β13 = 0.078, γ13 = 0.27, δ13 = −0.069, α14 = 0.0063,
β14 = −0.23, γ14 = 0.001, δ14 = −0.04, α15 = 1.07 · 10−08,
β15 = 1.06, and γ15 = 0.076. Monomial models of M1

are new device NMOS models in the subthreshold mode.
Monomial models of M4 and M6 are PMOS and NMOS
models, respectively, which are conventional device models
in the saturation mode.
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