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1. Introduction

An increase of the concern for 1-D periodic structure like leaky wave antenna often needs numerical
full wave analysis to obtain accurate results in 1-D periodic structure. To use the Method of Moments
(MoM) to 1-D periodic structure, fast and accurate methods for calculating 1-D periodic Green’s
function are often required. The Ewald method is one of the accelerating method for evaluating the
periodic Green’s function, and had already been applied to 2-D or 3-D periodic structures [1]-[4] and
was recently applied to 1-D periodic line sources [5] and 1-D periodic dipole sources [6]. Here we
apply the Ewald method with generalized pencil-of function (GPOF) method to accelerate the 1-D
periodic Green’s function in multilayered media, which are popularly used in circuits and antennas.

2. One-dimensional Periodic Green’s function in a multilayered medium
When current sources, that is perpendicular to Z, are periodically distributed along x-axis with p,

periodicity in a multi-layered medium (see Fig. 1), the electric field based on mixed potential integral
equation(MPIE) is expressed as

E(r)=—jwA"(r)- V¢’ (r) ey
where A" is 1-D periodic magnetic vector potential and ¢’ is scalar electric potential [7]. Due to
the modal surface current J inthe unitcell, A" and ¢” are given by

AP(r)= jgj(r,r') J(x")ds’ )
#7(r)= j Gy (r,r)[V'- J(x")]ds’ 3)

where G/, and G, are the dyadic and scalar Green’s functions for the 1-D periodic vector and scalar

potentials A” and ¢”. In a multilayered medium, the components of dyadic Greens function are

simply expressed as G* =G

e =G, =0 and Gy =Gj_ =G; thus only one component needs to be

calculated. Using nonperiodic spectral-domain Green’s function, 1-D periodic vector potential Green’s
function G, and scalar electric potential Gf are

1 & x|~ -k, Y
P Db e o gL Jk,

G (X, Y)= Ty Ze [0 Gy, ke, )e ™ di, (4)
where X =x—x", Y=y-y and k_ =k, ,+27zn/p, (n=0, 1, 2, ... ). Nonperiodic
spectral-domain Green’s functions are easily obtained by the spectral-domain immitance method in [8]

i - Z.—Z
and are expressed as G, =_LZTE , G, =—TE—1M
Jj& kp

To obtain 1-D periodic Green’s functions numerically, the integration in a infinite region should be
evaluated. However the integrand decays slowly (in a single dielectric layer with ground plane, the
convergence rate is 1/, ), the evaluation of the integration becomes the dominant time consuming

part. To avoid the time consuming integration, nonperiodic Green’s functions are approximated in
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terms of complex exponential summation by GPOF method in [3], [10] and extracted so that the
integration time can be significantly reduced by removing most of the integration. The approximated

I sk,
Green’s functions generated by GPOF method are expressed as G, (k. )w Y e! ek i
i=1 )
B 1 es,‘k,,
G,(k,)~ Zc,‘ . At k, >k, . . approximated Green’s functions are almost same as original ones
i=1 ]
with the negligibly small errors. Thus by substituting approximated Green’s functions for nonperiodic
Green’s functions in the &, >k, region, 1-D periodic Green’s functions in (4) are converted into
. 1 Lk - N 14p i esf’kn, Lo
GLiX D=3 e [ G-t |k,
px neN _k)._w i=l pn (5)
1 fa4
+2—ch"‘°GS(X,Y,sf“’)
i=1
where K, =k, —Re(k,,>) . N=in| [Re(k,?) ek ok b, = e +k, and
o sk
1 & -pxp€e ™ iy
G,(X,Y,5!*)=—) ¢ jk—e Y e, (6)

N BSTR 1y —on pn
The first term of right side in (5) needs only a few integrations over finite small intervals so that the
evaluation time for the integrations is significantly reduced. The integration paths should be carefully
determined because of Branch points, surface wave poles on the proper sheet and leaky wave poles on
the improper sheet of the complex &, plane. The guide lines are given in [7] and [11]

Applying Poisson summation transform and some efforts, the second term of right side in (5) is
converted to the scalar potential generated by the 1-D periodic static sources which are linearly phased
along %. Thus using Ewald method in [6] the summation of (6) can be accelerated by dividing into
two parts, spatial domain and spectral domain.

G: (X, Y:S;'A‘#) . Z e-fk;o'ip, R; =i Gsparia! + Gspecfrai (7)
n=-—m "'J:AJ
where R, =\/(X —np, Y +Y? +(s*) .
o erfc(R ,,/2F)
O g N ®)
A== n‘sf“"
Iy & ok || S P LEED |
G:Pectmi (X’ Y’ 5;‘&) S Z € b Z [ 1 :I I’:{"q'i'l (kxﬂ2E2) (9)

x N=—x q=0 q'

Thus the second term of right side is expressed as closed form and numerically only a few terms are
needed to calculate the summation in (8) and (9) due to the fast convergence properties. In (9), the
evaluation of exponential integral function E,. () is needed. Fortunately, higher order exponential

integrals are obtained by the recurrence relation in [9, Sec. 5.1] so that only E, (z) needs to be
evaluated numerically.

When the observation point is on the source point, source singularities are occurred in (4) and (5),
and singular contribution should be included in performing the MoM. In (4), the source singularity is

easily extracted, because (8) contains source singularity 1/R when s** =0.

3. Numerical Results

A typical 1-D periodic structure in a multilayered medium is microstrip line with periodic
perturbation with ground plane. Thus a single dielectric layer with a ground plane is considered and
tested in here. The dielectric layer has relative permittivity ¢, , relative permeability #, =1, and

thickness & . Fig. 2 shows the validity of GPOF approximation, the approximated Green’s function
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has the error that is lower than10~ compared to the exact Green’s function in the k, >k, .. In here,
Ky ma =2.5k, is chosen. Fig. 3 shows the convergence of Ewald method. Until satisfying the

convergence of the summation, only a few terms are needed. F ig. 4 shows the calculated 1-D periodic
Greens® functions and the comparison with reference results in [7]. The total used time for evaluating
Green's function by our method at 25 observation points is 8.0 seconds which is slightly larger than
7.5 seconds by the method in [7]. In here, about 85% time is used for evaluating E (z) numerically

that means the major time spent part in our method is numerical evaluation of E(z). If the
approximations in [9, Sec. 5.1.53-56] are used to get E (z), the total used time is reduced to 1.2

seconds that is more faster than that in [7] but if the input argument z has a large imaginary part or a
negative real part, the approximations in [9, Sec. 5.1.5 3-56] are not useful. Nevertheless our method is
1000 or more times faster than direct calculation of (4).

4. Conclusion

The 1-D periodic Green's function in a multilayered medium is accelerated using the GPOF method
and the Ewald method, and it is verified in a single dielectric layer with a ground plane. Although this
method has the time consuming problem in evaluating exponential integral functions, still it
guarantees fast computation time. And any other efforts are not needed to extract source singularities
because 1/R singularities are already shown in the closed form expressions.
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Fig. 1 Example of 1-D periodic planar structure in a
multilayered medium with

geometrical parameters.

relevant

physical

10°

107
1072
107}
107
107
107°
107
10°®

Relative Error

e i(C?A""""“—C";A)IGJ

i |((§‘,”"‘”"’x —C-}‘)/C-}¢|

-9 "
107G 20 40

kp

60
Ik,

80 100

and

Re(GAP) Im(GAP)
14x10°° 0
12x10°° X107
10x10°° -2x10°
810 1-3x10°
PV (0 VU VRV, SO SO S 15 ||
T L et LTSRS SARRRTICE SO — 167
T e B 4-6x107°
-5
of L7 x10

FREBgersedresil |()

Fig. 2. Relative errors of nonperiodic spectral-domain

Green's functions approximated by GPOF method.

Spectral-domain Green's functions in single dielectric
layer with a ground plane, which has ¢, =22, px =1,and Fig. 4

h=1.5mm , are approximated and compared to original

ones at 20GHz
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Fig. 3. Relative errors versus number of terms N(P=N)in
the Ewald sum in (7) with (8) and (9) calculated at

r=(x,y,z)=(lmm,1.5mm,0mm)

with

the

period

of

p,=2mm , the frequency of 20GHz and same physical

parameters of Fig. 2.
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Comparison between 1-D periodic Green’s

functions obtained using the Ewald Method and the

in [7] at 20GHz (a) G{ and (b) G, are plotted

as functions of the normalized absolute value of the
distance |¥|/4, between source and observation points.
The background structure is the same as in Fig. 1 and Fig.

2 and

normalized phase constant of the fundamental

harmonic is J,/k, =125 and normalized attenuation

constant is a, /k, =0.05 .
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