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Fundamental Aspects of Near-Field Coupling Small
Antennas for Wireless Power Transfer

Jaechun Lee, Member, IEEE, and Sangwook Nam, Member, IEEE

Abstract—A physical limitation on the power transfer efficiency
between two electrically small antennas in the near-field range is
presented. By using a Z-parameter which describes the interaction
between two antennas for ���� ���� spherical modes in con-
nection with antenna parameters, the maximum power transfer ef-
ficiency and the optimum load impedance are shown as functions
of the distance between two antennas, the radiation efficiency and
the input impedance of the isolated antenna. The theory is veri-
fied by a simulation with a small helical antenna, which generates
���� and ���� modes, simultaneously.

Index Terms—Antenna efficiency, electromagnetic coupling,
near fields.

I. INTRODUCTION

W IRELESS power transfer through coupled antennas
in the near-field range is being widely used in radio

frequency identification (RFID) systems. While RFID tags
require a small amount of power for an instantaneous process,
an increasing number of mobile electric devices are demanding
higher amounts of wireless power transfer. The feasibility
of this transfer depends on power transfer efficiency, and the
results on this topic were reported recently [1]–[3]. As in earlier
works, to estimate the power transfer efficiency of near-field
coupling antennas, a numerical or analytical method can be
used to solve the electromagnetic problem of the specified
antennas by varying their positions. However, in view of such a
system design, it is desirable that antennas are characterized as
a few parameters and a closed-form of formula for the power
transfer efficiency is given as a function of them like the Friis
transmission formula between antennas in the far-field range.
According to that purpose, the spherical mode representation
is used to obtain a simple description of the problem, since the
antennas used for wireless power transfer are electrically small
and generate predominantly or spherical modes.
Furthermore, the coupling properties between antennas are
obtainable from the interaction theory between spherical modes
in space [4]. A similar approach had been studied to investigate
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the mutual coupling effect between adjacent antennas on the
performance of an array antenna system [5], [6].

In this study, a simple and general model of antennas and cou-
pling network among them in wireless power transfer system
is presented based on the spherical mode theory. This enable
us to evaluate system performance readily with a few parame-
ters of antenna, and it informs us of the necessary parameters
of antenna to achieve the power transfer efficiency required by
an application. From the formulation, the physical limitation of
the power transfer efficiency and the effect of the radiation ef-
ficiency on it are examined, and the optimum impedance for
maximum power transfer efficiency is found.

In most applications, as in RFID systems, the relative orienta-
tion, or more generally, the relative polarization of the antennas
will not coincide. The formula includes the case of different
orientations using identical antennas; The case of different an-
tennas can be treated with a similar method. The characteristics
of coupling magnitude, that determines the power transfer ef-
ficiency, are analyzed in terms of the coupling coefficients be-
tween the spherical modes in parallel or orthogonal directions.

The theory is verified with an example of helical antenna. In
addition, the optimum frequency of the power transfer efficiency
is shown with this actual antenna in example, while an ideal
lossless antenna shows the better power transfer efficiency at
lower frequency.

II. THEORY

To obtain coupling network between antennas, first, their
transmitting and receiving fields are expressed as spherical
waves. Second, each antenna is represented by a scattering
parameter between its feed port and spherical waves. Third,
space between antennas is described as a Z-parameter among
their spherical waves. Finally, antennas and space are cascaded
into a two-port parameter between feed ports of two antennas.
Throughout this study, time convention is assumed for the
field quantities and suppressed.

A. Spherical Mode Representation of Antenna Model

The electric and magnetic fields outside an antenna can be
expressed by spherical modes [8], [9]

(1)

(2)
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where is the wave impedance and , are the spher-
ical vector wave functions defined in Appendix A. and

are the coefficients of and modes, re-
spectively, whose superscripts, and indicate outward and
inward traveling directions, respectively. The radiated power is
written by

(3)

Each spherical mode can be regarded as propagating in a wave-
guide of the unit characteristic impedance with its wave coeffi-
cient being or .

Between these spherical modes and the feed port of the an-
tenna, a S-parameter can be built [4]

(4)

where is the reflection coefficient at the feed port. , and
are the receiving, transmitting and scattering coefficient ma-

trices, respectively, for the spherical modes. , are the co-
efficients of the incident and reflected waves at the feed port,
respectively. and are the coefficient vectors of the incident
and reflected spherical modes, which contain , and

, , respectively.
Generally, antennas used for wireless power transfer are very

small compared with wavelength, and are coupled in the near-
field range. Such antennas predominantly generate the lowest-
order spherical modes, i.e., and modes, which
are represented as and modes, respectively, under
properly rotated coordinates as shown in Appendix B. So we
consider a small antenna assumed to

• radiate and receive only and modes, having
no interaction with higher-order modes;

• have uniform phase of current distribution;
• be reciprocal.
The fields generated by the antenna are written in detail in

Appendix A.
The input impedance of the single antenna is denoted as

(5)

where and are the input resistances related with the
radiated power into space and the loss in the antenna, respec-
tively.

The radiation efficiency is defined by the ratio of the radiated
power, , to the input power,

(6)

The radiated power is divided into those of and
modes

(7)

Fig. 1. Near-field coupling antennas modeling with �� and �� modes
translation and rotation.

Fig. 2. Equivalent network between the input ports of two identical antennas.

where is the input current of the antenna and
.

The phases of the input current and the spherical mode co-
efficients are same since the current on the antenna is assumed
to have a uniform phase and the spherical mode coefficients are
determined by [8, Eq. (60)]

(8)

where is the current density and and are real-
valued functions in free space as defined in Appendix A.

Then, from (3) and(7), the relation between the input current
and the spherical mode coefficients is given as

(9)

This can be described as the transformer between antenna feed
and spherical mode ports as depicted in Fig. 2. Its S-parameter
representation with of the feed port being is given by

...
. . .

...
...

(10)

where and , the transmitting coefficients for and
modes, respectively, are

(11)

These are related with the radiation efficiency as

(12)
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B. Space Description as the Relation of Spherical Modes in
the Distance

Space can be seen as a four-port network between
spherical modes centered at each antenna

positions as depicted in Fig. 2. This network parameter is
obtained from the following relation among spherical modes
with different origins and orientations, namely, the Addition
theorem in Appendix C [9], [10]

(13)

(14)

where , , , and ,
are the translation coefficients including rotation in

Appendix C. , are different from , in
that the -dependent function is instead of ,
where is the spher-
ical Bessel function of the first kind. and
are the spherical Hankel functions of the first and second
kind, corresponding to the inward and outward traveling
wave, respectively. From (13), the wave coefficients at each
coordinate can be set as , ,

, , where prime
indicates origin at Antenna 2 position. By using the voltage and
current definition with the unit characteristic impedance [11],
Z-parameters are written by

(15)

(16)

(17)

(18)

where . The remaining Z-parameters
are obtained from (14) and by using reciprocity as

(19)
where , are abbreviated as , .

C. Whole Coupling Network Between Two Antennas

We consider the case of using identical antennas; The case of
different antennas can be treated with a similar method. Cou-
pling network between two antennas is described by cascading
networks of two antennas and space as depicted in Fig. 2. The
whole network between two input ports of antennas can be ob-
tained by conversion of Z-parameter of space in (19) into S-pa-
rameter and cascading it between S-parameters of antennas in
(10), or by using scattering flow graphs in [4] with the S-pa-
rameters of antennas. It was found that two approaches yield

TABLE I
CHARACTERISTICS OF THE TRANSLATION COEFFICIENTS IN � IN TERMS OF

CYLINDRICAL COMPONENTS AT � � ���� WAVELENGTHS

the same result. Since the Z-parameter expression of the result
is simpler than S-parameter expression, Z-parameter represen-
tation is used being written by

(20)

where

(21)

is the main factor of the maximum power transfer effi-
ciency as will be shown in (29) and increasing its magnitude
leads the maximum power transfer efficiency to 1. We can see
that is composed of two kinds of the translation coefficients,

and , which represent translation between the
same kind of modes and different kind of modes, respectively,
in (13) and (14). Each translation coefficient is separated into
x, y and z-component as shown in (55) in Appendix C. Char-
acteristics of them are rewritten as cylindrical components and
summarized in Table I, showing three non-zero components.
Thus can be analyzed as a linear combination of three
cylindrical components whose magnitude and combining ratio
are determined by the position and orientation of Antenna 2,
respectively.

The resulted Z-parameter is obtained under the assumption
of only and modes generation and interaction. But
this assumption becomes invalid when two antennas approach
very close, because the magnitudes of higher order modes in-
crease too large to neglect in the vicinity of an antenna owing to
the faster increase of the higher order Hankel functions in their
modes. So the Z-parameter deviates from the formula within a
close distance between antennas, which will be shown with an
example in Section IV.

III. MAXIMUM POWER TRANSFER EFFICIENCY AND OPTIMUM

LOAD IMPEDANCE

From the Z-parameter, the input impedance of the transmit-
ting antenna is given by

(22)
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where is the load impedance of the receiving antenna. The
input power is

(23)

The power delivered to the load is

(24)

The power transfer efficiency is defined by

(25)

The maximum power transfer efficiency can be found where

(26)

This yields the optimum load impedance and the maximum
power transfer efficiency as

(27)

(28)

(29)

where . This can be also obtained from the
simultaneous conjugate matching condition of a two-port net-
work for the maximum transducer power gain [12, p. 619] as

(30)

From (29), we can see that the maximum power transfer effi-
ciency depends only on as a function of the relative position
and orientation of antennas, their radiation efficiency and the
ratio between and modes.

In Fig. 4, the maximum power transfer efficiency with
for four cases of antenna position and orientation are com-

pared. The cases of (a), (c) and (d) also represent the three cases
of maximum coupling by , and , respec-
tively, in Table I. The result shows that the best performance in a
range less than 0.3 wavelengths is obtained by placing the other
antenna with parallel orientation at .

In Table II, 2-dimensional patterns of the maximum power
transfer efficiency with respect to the orientation of Antenna
2 at wavelengths and , , are illus-
trated. A radial and angular position within the circular pat-
tern correspond to and , respectively, of the orientation of
Antenna 2 as depicted in Fig. 3(b). Each pattern is separated
into the cases of considering only one of three non-zero com-
ponents in Table I separately in , and compared with the orig-
inal case where all components are combined in . We can ob-
serve that at the position of Antenna 2 at , only -com-
ponent related with works, and away from the position
at , -component related with and -component

Fig. 3. (a) Legend and (b) 2-dimensional mapping of the orientation of Antenna
2 for the maximum power transfer efficiency pattern in Table II.

TABLE II
MAXIMUM POWER TRANSFER EFFICIENCY PATTERN WITH RESPECT TO

2-DIMENSIONAL MAPPING OF THE ORIENTATION OF ANTENNA 2 AT

� � ��� WAVELENGTHS

Fig. 4. The maximum power transfer efficiency with � � � against the posi-
tion and orientation of the opposite antenna at �� � � � � �� � � (a) ��� �� ��,
(b) ����� �� ��, (c) ����� ������, (d) ����� ���� ����.

related with cross-coupling term, in affect the max-
imum power transfer efficiency pattern at and .

It is notable that the input reactance of the antenna has no
effect on the maximum power transfer efficiency and only shifts
the optimum load reactance in (28). So we will see the optimum
load impedance of the antenna with as a standard.
From (27) and (28), the optimum load impedance corresponding
to Fig. 4 is plotted on the Smith chart in Fig. 5 as the optimum
load reflection coefficient

(31)
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Fig. 5. The Smith chart representation of the optimum load impedances corre-
sponding to Fig. 4 (� � � , � � �).

Fig. 6. The maximum power transfer efficiencies of antennas with different
radiation efficiencies �� � �� ���� ��������� at � � �.

Fig. 7. The Smith chart representation of the optimum load impedances of
antennas with different radiation efficiencies �� � �� �������� at � � �
(solid), �	� (dash) according to the distance between antennas.

where the characteristic impedance, , is set as . Fig. 5
exhibits various paths depending on cases, but common direc-
tion toward infinite load as the distance between antennas gets
closer. So, the larger magnitude of load is proper at a closer
distance. The dependence on the radiation efficiency as a cru-
cial factor in the maximum power transfer efficiency is shown
in Fig. 6. If we use an ideally lossless antenna , then
lowering frequency achieves the higher transfer efficiency at a
fixed distance. But since the radiation efficiency of an actual an-
tenna under a given size decreases at the lower frequency, there
may exists an optimum frequency as shown in the following ex-
ample. As the radiation efficiency decreases, more variance is
required for the optimum load resistance while less is required
for the optimum load reactance as shown in Fig. 7.

Fig. 8. Center-fed helical antennas (�	
��� � � �, �
��	�	� � � �,
�
�	 ��
��	�� � � ��, 4-turns, ��	���
�� ��	��	�� � ����� ).

Fig. 9. Normalized � of the helical antenna at � � �, �	�.

IV. EXAMPLE

To verify the theory, we compare the Z-parameters of an ac-
tual antenna with that in (20). A center-fed helical antenna is
chosen as illustrated in Fig. 8 with 4 turns, 4 cm diameter, 5 cm
height, and a copper wire thickness of 1 mm. The helical an-
tenna consists of open-ended wires and acts both like a dipole
and loop antenna. It generates both and modes
and resonates by itself at about 295 MHz. We set the oper-
ating frequency at 300 MHz for the unit wavelength. Simula-
tion is carried out using commercial software, FEKO, which
is based on the method of moments. The input impedance of
the single antenna, obtained by simulation, is
at 300 MHz. We assume the antenna is tuned to have zero reac-
tance with a series capacitor. The radiation resistance is given
as from the simulation with a perfect electric conductor
(PEC) wire. The radiation efficiency becomes 0.77 by (6).
of the two antennas when close together is computed in Table III
with normalization by the input impedance of the single an-
tenna. It shows that in (20) becomes invalid in distances
within 0.1 wavelengths, which is about twice the antenna size.
This is because the assumption becomes invalid when two an-
tennas approach very close as mentioned above. of the two
antennas, normalized by the radiation resistance, is depicted in
Fig. 9 in comparison with from (20) by the theory. It
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Fig. 10. The maximum power transfer efficiency of the helical antenna (� �
����, ������	
� � ��� ��) in four cases.

Fig. 11. The Smith chart representation of the optimum load impedances cor-
responding to Fig. 10.

Fig. 12. Radiation efficiency of the helical antenna with different resonant fre-
quency under the same size and corresponding number of turns and thickness
of wire.

shows a good agreement in distance of more than 0.1 wave-
lengths and some deviation within 0.1 wavelengths similar to

. Although the Z-parameter shows deviation from the theory
when two antennas are very close, at that point, the maximum
power transfer efficiency is already converging to 1, and thus
does not deviate from the theory as shown in Fig. 10. The op-
timum load impedance in Fig. 11 also shows the validity of the
theory. As mentioned above, to find out the optimum frequency
for the maximum power transfer efficiency under the fixed size,
the resonant frequency of the antenna is lowered by increasing
the number of turns without increasing its size. Under the fre-
quency of 50 MHz the thickness of wire is reduced to avoid the
direct contact between wires. The radiation efficiency calculated
by simulation in Fig. 12 shows a decrease at lower frequency as
expected. From this, the distances required for the maximum
power transfer efficiency of 50%, 70% and 90% are found in

Fig. 13. Distance for the maximum power transfer efficiencies of ������,
������, and ���� � with the helical antenna and a lossless antenna
�� � ��.

TABLE III
NORMALIZED � OF THE HELICAL ANTENNA

Fig. 13 and shows the optimum frequency at around 56 MHz
while an ideal lossless antenna with shows a contin-
uous increase of the distance at lower frequency.

V. CONCLUSION

To simplify and generalize the wireless power transfer
problem, an approximate Z-parameter has been built by relating

or mode interaction with the antenna parameters.
Using the Z-parameter, we have shown the maximum power
transfer efficiency according to the radiation efficiency of the
single antenna. The corresponding optimum load impedance
has been plotted for reference. Although the Z-parameter shows
deviation from the theory when two antennas are very close,
the theory provides a helpful measure to estimate the power
transfer efficiency of the near-field coupling antennas.

APPENDIX A
SPHERICAL VECTOR WAVE FUNCTION

If we set the electric and magnetic vector potentials outside
an antenna on the time dependence as

(32)

where ,
is the wave number,
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, and is the Kronecker delta, then the
electric and magnetic fields

(33)

(34)

yield (1) and (2), a linear combination of the spherical vector
wave functions [8], [9]

(35)

(36)

and in (8) are different from and in

that is replaced by , where is the spher-
ical Bessel function of the first kind.

The fields of the antenna generating and modes
are written as

(37)

(38)

APPENDIX B
AND MODES UNDER COORDINATE ROTATIONS

The spherical mode under coordinate rotations as depicted in
Fig. 1 can be derived from the following formula on the spher-
ical harmonics [9]

(39)

where

(40)

is the spherical harmonic function

. and are the rotation angles about
the former -axis and the new -axis, respectively, as depicted
in Fig. 1. For and modes, we can get from (39)
with and

(41)

Applying (41) to(35),(36) and exchange of the original and
rotated coordinates with and angles result in

(42)

where . We can see that arbitrary and
modes can be represented as a and a mode

in properly rotated coordinates, respectively.

APPENDIX C
ADDITION THEOREM UNDER COORDINATE TRANSLATION

AND ROTATION

The addition theorem of the spherical vector wave functions
under coordinate translation is given as [10, p. 595]

(43)

(44)

where , .

(45)

(46)

where .
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The general expressions for the translation coefficients,
and are complicated, so we consider only the

case of and in [13] as

(47)

(48)

where .
The translation coefficients between , modes at

origin and translated , modes centered at are
given by

(49)

(50)

(51)

(52)

By some manipulations of (43) and (44), the similar form can
be built on , modes, in which the translation
coefficients between , modes and
modes can be written by

(53)

(54)

When the translated coordinate is rotated, the coefficients,
and in (43) and (44) are replaced by and
which are linear combinations of and ,

respectively [9]. and are given from (42) as

(55)

and written by

(56)

(57)
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