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Abstract—A finite-element method (FEM)-based hybrid Z %
method (or iterative FEM) is successfully applied to a three-di- o (J, M) Yoy
mensional (3-D) scattering problem without the effect of internal —
resonance. With only a small number of meshes around a 3-D
scatterer, this FEM is shown to give an accurate result through
several iterative updates of the boundary conditions. To confirm .
the efficiency of this method, scattering from a 3-D cavity-backed
aperture is analyzed and the results obtained are compared with
the same obtained by another conventional method.
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I. INTRODUCTION

HE finite-element method (FEM) has been widely used as
a powerful tool for solving bounded problems. However,
for open-region problems, since the mesh of the computational
domain cannot be extended to infinity, an appropriate boundaﬁy, 1. Geometry of a cavity-backed aperture in a ground plane.
condition must be applied or special action must be taken in
order to simulate the effect of the infinite domain. As known

: ; - - occur, and this internal resonance unfortunately corrupts a
widely, in order to apply the FEM (o radiation and scattermg)H solution. To alleviate this problem, the iterati\)//e FEMpin
problems, a number of techniques have been proposed by m?&% L o ' .

; ; unction with a radiation-type boundary condition [9] has
researchers. Among these techniques, the hybrid methods o suaqested and a Iiedy[t)o a two—dir);ensional s[c;tterin
as the finite-element boundary integral method (FEBIM) a bl 99 ull ?ff) tint | 9
the methods incorporating various kinds of absorbing boundeﬁ'g}ljn g:; SuaCC;S‘:’hlé );t\:\gveoil:elgtiev??:éiﬂsm;\n;er.a diation-tvoe
conditions (ABCs) and perfectly matched layers (PMLS) ha\%e Paper, yp

been used by many [1], [2] since they are robust and give go 8undary condition is extended to involve a 3-D vector-wave

results. However, each method has its inherent shortcomi ation and gpphed to scattering f.rom a 3-D cawty—b_a_cked
and, thus, many efforts have been made to improve its efficien erture as a simple example. To verify accuracy and efficiency

As another approach of these attempts, the FEM-ba(s%gQﬁwresun' this method is compared with the conventional
; .

iteration method (or iterative FEM) has been proposed bef
[3]-[7]. According to this approach, the FEM was shown to
give an accurate result efficiently with only a small number Il. FORMULATION

of meshes around a scatterer through several times of iterativgonsider a 3-D cavity-backed aperture in a ground plane, as
updates of the boundary conditions. The proposed method fRtrated in Fig. 1, wherel, is a perfect conducting boundary
been applied to two-dimensional electrostatic and scatteriggrface andd, is a fictitious boundary surface on which the
problems [3]-[5] and then extended to three-dimensional (3-Bhite-element meshes are terminated. According to the con-
scattering problems [6] and 3-D guided-wave problems [Alentional iterative FEM, the tangential electric field is deter-
However, this method has been found not to be suitable fgfined and updated on this fictitious surfatg as the Dirichlet
characterizing the scattering by an object such as a cavitygundary condition. However, the FEM solution obtained from
a scatterer with a resonant size since the Dirichlet boundafys tangential electric field ort, is found to be corrupted by
condition used in this method causes internal resonance {8 modal solution of an imaginary cavity bounded.byand
A,. Thus, a radiation-type boundary condition should be ap-
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wherek, is the free-space wavenumbEy, is the scattered elec- magnetic current source, we invoke image theory [10]. Thus,

tric field, and# is a unit vector normal to the fictitious surfacethe total fields on the boundary surfade are the sum of this

A, ifitis placed in the far-field region. However, since the ficscattered field, the incident field, and the field reflected by a

titious surfaceA, should be placed considerably close to thperfect electric conductor (PEC) ground plane. The incidentand
scattering surfacd,, the Sommerfeld radiation condition in thereflected fields are invariant with iterations and, thus, only the

far-field region is not suitable for this case and should be recoscattered field is updated on each iteration. In order to describe
structed as this relationship mathematically, we define a vedPoas

A X V x Eg+ jkon x 7 x Eg = Ug. (2) P=VXxE+jkn x E @)

This radiation boundary condition means that the left-harigr convenience. From the simple relation@f= # x P, U is
side of the Sommerfeld radiation condition does not vanish fawritten as
the near-field region. The key idea is based on updating this
residual ternlJ;. For the formulation in terms of the total field, U=naxPy+7axPs (8)
(2) is rewritten as
whereP;, is calculated with the incident and reflected electric
AXVXE+ jkon xnx E=U (3) fields andP; is calculated with the scattered electric field. The

] o ) last term of the functional then becomes
wherekE is the total electric field andJ is the sum ofUg and

the residual term due to the incident field. E . Uds
With this boundary condition, the functional is given by A,
1 1 ) :—// (ﬁxE)-Pirds—// (i x E) - Pgds.
F(E):—/// L (VX E)-(V x E) - e E- Edv " N
2 Jv I ©)
+‘@// (ﬁxE)-(ﬁxE)der// E.Uds o )
2 A, A, The excitation is assumed to be a plane wave given by
4

wherey:,. ande,. are the relative permeability and relative per-  E‘(r) = { (04 : 92) 0 + (Oé : </>Z) ¢z}6_]k * (10)
mittivity, respectively,V denotes the volume of the imaginary

cavity bounded byd. and A,, and 4, denotes the fictitious
boundary surface on which the meshes are terminated. If
value ofU is known exactly, the exact value of the electric fiel
everywhere can be calculated by seeking the stationary point OLi .
the given functional. However, the residual veddras well as
the electric fieldE is unknown and, thus, the value of the vector JU ) _ _
U is approximated initially on the assumption that the electriftn€re¢’, ¢* are the unit vectors in the spherical system and

field E in (3) is the same as an incident electric field. By dis2Ssociated with the incident angiésandy*, respectively. With

cretizing the volumé” into small vector finite elements [1] angthis incident field,.we can calculqte the reflected field easily so
taking the partial derivatives df in (4), we obtain the following that the vectoP;, is obtained straightforwardly from (7). Next,

set of linear algebraic equations [1]: '

herea = 6% cos o + ¢' sin «v is the polarization vectok’ is
(3 @ propagation vector given by

—ko (Sin 6" cos ¢'%x + sin 6" sin 'y + cos 9”2) (12)

in order to calculate the vect®; due to the equivalent magnetic
current (6), we introduce the vector poten#&[10]. With this
Ax(® — pb© (5) vector potentiak', Ps is given by

where A is a square matrix depending on the geometry and Ps =V x Eg + jkoft X Eq

dielectric materialsx(® is a vector representing the unknown __ {ng FV(V- F)} — jkoit X (V x F) (12)
electric field including that on the boundary surfatg b(? is a

source vector calculated from the value of the residual v@8{or yyherey, is a unit vector normal to the artificial boundary surface

and superscrip{0) denotes the zeroth iteration. As mentioned; andE, is the scattered electric field. The vector poterial
above, the solution vector given by (5) is not exact slic®- s given by
cludes only the effect of the incident field. In order to update the
value ofU on A,, we introduce the following equivalent mag- _ / N
netic currenfM on the aperture surfacé, in accordance with F= //A 2M(r’)Glo(r, r')ds (13)
the equivalence principle [10]:
whereM(r’) denotes the equivalent magnetic current over the
M=E, x7 (6) apertured, andGy(r,r’) denotes the free-space Green’s func-
tion given by
whereE, is the electric field on the aperture, which is calculated
in (5), andn is a unit vector normal to the aperture surface. In

order to calculate the scattered field generated by this equivalent

e~ Jkolr—r’|
GO(rv I‘/) (14)

- dr|r — 1|
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wherer andr’ are the position vectors that denote the observa- 10 r
tion and source points, respectively. Substituting (13) into (12)
and manipulating the vector equation, we obtain

P, =2 <k3 // MGods’—i—// (V’-M)VGods’>
Aa A,
+2jkon X <// M x VGods’> . (15) i ——  Co-Pol
A, [ —+—  Cross-Pol

By the typical finite-element procedure, the cavity aperture,
as well as the volume, is subdivided into small surface patches

and (9) is then written as the following matrix equation: 0 10 20 30 40 50 60 70 8 90
¢' (degrees)
bo(l) = bo ir T Qxa(O)- (16) (a)

Wherebo(l) is the source vector to be used at the next itera- or

tion, b, i+ is the source vector invariant with iterations, which r
is calculated with the incident and reflected fields(® is the or
electric-field coefficient vector on the aperture calculated at the i
zeroth iteration, an@@ is the rectangular matrix that correlates g3 -10
the electric-field coefficients with the source vector. Note that & i
a subscript 6" denotes a vector composed of only the values < g [
at the edges on the artificial boundasy, and “a” denotesa ~ © | I
vector composed of only the values at the edges on the apertul
A,. Thus,Q is anN, by N, matrix whereN, and N, are the
numbers of edges placed ek and A,, respectively.
Equations (5) and (16) are generalized to thih iteration
and written as

30 [

-40 , 1 1 I 1 I 1 I 1 1 1 1 Il 1
0 10 20 30 40 50 60 70 80 90
¢' (degrees)
b
(m) _1,(m) ( )
Ax'" =pb
bo(m+1) =bg ;e + QXa(m). (17) Fig. 2. MonostaticRCS patterns for a deep empty rectangular cavity
’ of dimensions0.7A x 0.1A x 1.73X versus incidence angle’ when

o ) ) A = 40°. Solid lines with filled squares and triangles represent this method;
This iteration procedure can be made computationally effielid and dotted lines represent the FEBIM and vacant circles and squares

cient if the following properties are fully exploited in the im-represent the moment method/modal approacha(agx 90° (E = oE)
plementation. First, matriceA andQ are invariant during the (), = ¢° (E - éE9>_

iterations so that they are computed only once at the initial state

of the procedure. Second, since the system ma\tris gener-

ated by a standard finite-element procedure and, thus, it is sym- I1l. NUMERICAL RESULTS

metric and highly sparse, it is solved efficiently by means of a

standard finite-element solver. If a direct solver is used, the de-n order to examine the validity and the capability of the iter-
composition ofA,, which is time consuming, is performed onlyative FEM, we have analyzed various shapes of cavity-backed
once at the zeroth iteration. If an iterative solver is used, the gpertures in a ground plane. In this study, triangular prism
lution at themth iteration is a good initial guess for the iterativeedge-based elements [11] are used to be able to deal with an
solver at thgm + 1)th iteration, and the preconditioner, if anyarbitrary cross section of a cavity, as well as a rectangular cavity
is calculated only once. Third, only a very small increase of tt&d, thus, the aperture of the cavity is divided into triangular
computational domain is necessary since the fictitious bound#gtches.

surface can be placed so close around the scattering object§:irst, with the excitation by a plane wave, scattering from a
These features make the iterative FEM competitive with othdeep empty rectangular cavity of dimensidh8A x 0.1X x
techniques as far as computing time and memory requiremeht&3\ is considered and its results are illustrated in Fig. 2. The
are concerned. In addition, preexisting FEM codes for bounded-polarized and cross-polarized monost&RiCSpatterns of
problems may be easily incorporated into this iteration procthe cavity versus incidence anglé whené’ = 40° are com-
dure and only one part has to be added that corresponds topheed with data obtained by the FEBIM [12] and the moment
computation of the matrix). Note that singularity extraction, method/modal approach [13]. Good agreement is shown be-
which should be carried out in the FEBIM, is not necessary tween the results.

this calculation since the fictitious boundary surface is placed atFig. 3 shows the convergence characteristics with respect to
a given distance from the aperture surface. the distance between the artificial boundary surfageand the
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Fig. 5. Reduced bandwidth of the system matrix after
Gibbs—Poole—Stockmeyer bandwidth profile reduction algorithm.

order to decompose this system matrix of the iterative FEM effi-
ciently, at first we used the standard Gibbs—Poole—Stockmeyer
bandwidth profile reduction algorithm [14] for the system ma-
trix to be a banded form, as illustrated in Fig. 5 and a banded
Fig. 4. Computational efficiency (computation time): iterative FEMMatrix LDLT solver with the profile storage [1]. However, it is
versus FEBIM. A: 1.5A x 0.05A x 0.25A narrow rectangular crack. foynd that the reduced bandwidth is over several hundred, and
B:0.5A x 0.5\ x 0.3\ shallow square cavity’: 0.5A x 0.5\ x 1.75X deep thi lue i hi than th - b f

square cavityD: 1.0x x 1.0A x 1.0\ large square cavitys: Radius:0.25\ IS va ue_ls much farger than the m‘?X'mur_n n.um er of nonzero
depth:0.3 shallow circular cavityF': Radius:0.5A depth:1.5) deep circular €lements in a row of the system matrix, which is about 30 or less
cavity. G: Radius:1.0A depth:0.3A large circular cavity. when triangular prism elements are used. This leaves much to be

improved although the bandwidth reduction and ki, " de-

aperture surfacel,. As expected, the number of iterations ingompogition considera_bly save both storage and operation count
creases as the artificial surfadg is getting closer to the aper-in the tnang.ular factorlzatpn process. Thu.s_, we haye replaped
ture surfaced, . On the contrary, ifd, is placed too far fromi, th_e above with sparse matrlx LU de_cor_nposmon algorithm using
in order to reduce the number of iterations, however, the numB{nimum degree ordering [15], which is commonly used for re-
of meshes increases rapidly and, thus, the overall computatf8£ing fill-in during factorization of a sparse matrix. With this
time and memory requirement increase as well. Therefore, fg0rithm, the iterative FEM is about twice or three times faster
optimal criterion should be determined. Unfortunately, since th@an the conventional FEBIM for scattering by various cavities,
convergence condition depends on the distance betwgand s shown in Fig. 4.

A, and the whole FE discretization in a very complex manner, it

is very difficult to propose an analytical criterion. Thus, we have IV. CONCLUSIONS

empirically determined the almost optimal distance between theAn efficient iterative FEM in two dimensions, which avoids

two surfaces through numerical experiments for numerous cay- . . . .
. . . . . internal resonance, is extended to three dimensions and applied
ities with various shapes and sizes. Up to a siz& obf the

aperture in a cavity, a distance@fl A\ — 0.2\ between4, and to sce}ttermg frqm a 3-D _cawty—backed a_p_erture. Through ex
. . o haustive numerical experiments, an empirical convergence cri-
A, is found to be enough for a solution to converge within onl

X . . o ferion for this method is proposed. The validity and efficiency
several times of iterations and this distance corresponds to one . . , . .
) . of this method is shown by comparing this method with the con-
or two layer meshes of triangular prism elements.

With this criterion, the computation time taken by the iterativ\éemlon"’II FEBIM.

FEM is compared with that by the conventional FEBIM using

a biconjugate gradient method. Fig. 4 shows the computational REFERENCES
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