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Abstract—A finite-element method (FEM)-based hybrid
method (or iterative FEM) is successfully applied to a three-di-
mensional (3-D) scattering problem without the effect of internal
resonance. With only a small number of meshes around a 3-D
scatterer, this FEM is shown to give an accurate result through
several iterative updates of the boundary conditions. To confirm
the efficiency of this method, scattering from a 3-D cavity-backed
aperture is analyzed and the results obtained are compared with
the same obtained by another conventional method.

Index Terms—Internal resonance, iterative FEM, radiation-type
boundary condition.

I. INTRODUCTION

T HE finite-element method (FEM) has been widely used as
a powerful tool for solving bounded problems. However,

for open-region problems, since the mesh of the computational
domain cannot be extended to infinity, an appropriate boundary
condition must be applied or special action must be taken in
order to simulate the effect of the infinite domain. As known
widely, in order to apply the FEM to radiation and scattering
problems, a number of techniques have been proposed by many
researchers. Among these techniques, the hybrid methods such
as the finite-element boundary integral method (FEBIM) and
the methods incorporating various kinds of absorbing boundary
conditions (ABCs) and perfectly matched layers (PMLs) have
been used by many [1], [2] since they are robust and give good
results. However, each method has its inherent shortcomings
and, thus, many efforts have been made to improve its efficiency.

As another approach of these attempts, the FEM-based
iteration method (or iterative FEM) has been proposed before
[3]–[7]. According to this approach, the FEM was shown to
give an accurate result efficiently with only a small number
of meshes around a scatterer through several times of iterative
updates of the boundary conditions. The proposed method has
been applied to two-dimensional electrostatic and scattering
problems [3]–[5] and then extended to three-dimensional (3-D)
scattering problems [6] and 3-D guided-wave problems [7].
However, this method has been found not to be suitable for
characterizing the scattering by an object such as a cavity or
a scatterer with a resonant size since the Dirichlet boundary
condition used in this method causes internal resonance [8]
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Fig. 1. Geometry of a cavity-backed aperture in a ground plane.

to occur, and this internal resonance unfortunately corrupts a
true solution. To alleviate this problem, the iterative FEM in
conjunction with a radiation-type boundary condition [9] has
been suggested and applied to a two-dimensional scattering
problem successfully without internal resonance.

In this paper, the above iterative FEM with a radiation-type
boundary condition is extended to involve a 3-D vector-wave
equation and applied to scattering from a 3-D cavity-backed
aperture as a simple example. To verify accuracy and efficiency
of the result, this method is compared with the conventional
FEBIM.

II. FORMULATION

Consider a 3-D cavity-backed aperture in a ground plane, as
illustrated in Fig. 1, where is a perfect conducting boundary
surface and is a fictitious boundary surface on which the
finite-element meshes are terminated. According to the con-
ventional iterative FEM, the tangential electric field is deter-
mined and updated on this fictitious surfaceas the Dirichlet
boundary condition. However, the FEM solution obtained from
this tangential electric field on is found to be corrupted by
the modal solution of an imaginary cavity bounded byand

. Thus, a radiation-type boundary condition should be ap-
plied on this fictitious surface in order to avoid this internal
resonance.

In general, the Sommerfeld radiation condition is given by

(1)
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where is the free-space wavenumber, is the scattered elec-
tric field, and is a unit vector normal to the fictitious surface

if it is placed in the far-field region. However, since the fic-
titious surface should be placed considerably close to the
scattering surface , the Sommerfeld radiation condition in the
far-field region is not suitable for this case and should be recon-
structed as

(2)

This radiation boundary condition means that the left-hand
side of the Sommerfeld radiation condition does not vanish in
the near-field region. The key idea is based on updating this
residual term . For the formulation in terms of the total field,
(2) is rewritten as

(3)

where is the total electric field and is the sum of and
the residual term due to the incident field.

With this boundary condition, the functional is given by

(4)

where and are the relative permeability and relative per-
mittivity, respectively, denotes the volume of the imaginary
cavity bounded by and , and denotes the fictitious
boundary surface on which the meshes are terminated. If the
value of is known exactly, the exact value of the electric field
everywhere can be calculated by seeking the stationary point of
the given functional. However, the residual vector, as well as
the electric field is unknown and, thus, the value of the vector

is approximated initially on the assumption that the electric
field in (3) is the same as an incident electric field. By dis-
cretizing the volume into small vector finite elements [1] and
taking the partial derivatives of in (4), we obtain the following
set of linear algebraic equations [1]:

(5)

where is a square matrix depending on the geometry and
dielectric materials, is a vector representing the unknown
electric field including that on the boundary surface, is a
source vector calculated from the value of the residual vector,
and superscript denotes the zeroth iteration. As mentioned
above, the solution vector given by (5) is not exact sincein-
cludes only the effect of the incident field. In order to update the
value of on , we introduce the following equivalent mag-
netic current on the aperture surface in accordance with
the equivalence principle [10]:

(6)

where is the electric field on the aperture, which is calculated
in (5), and is a unit vector normal to the aperture surface. In
order to calculate the scattered field generated by this equivalent

magnetic current source, we invoke image theory [10]. Thus,
the total fields on the boundary surface are the sum of this
scattered field, the incident field, and the field reflected by a
perfect electric conductor (PEC) ground plane. The incident and
reflected fields are invariant with iterations and, thus, only the
scattered field is updated on each iteration. In order to describe
this relationship mathematically, we define a vectoras

(7)

for convenience. From the simple relation of , is
rewritten as

(8)

where is calculated with the incident and reflected electric
fields and is calculated with the scattered electric field. The
last term of the functional then becomes

(9)

The excitation is assumed to be a plane wave given by

(10)

where is the polarization vector, is
the propagation vector given by

(11)

where , are the unit vectors in the spherical system and
associated with the incident anglesand , respectively. With
this incident field, we can calculate the reflected field easily so
that the vector is obtained straightforwardly from (7). Next,
in order to calculate the vector due to the equivalent magnetic
current (6), we introduce the vector potential[10]. With this
vector potential , is given by

(12)

where is a unit vector normal to the artificial boundary surface
and is the scattered electric field. The vector potential

is given by

(13)

where denotes the equivalent magnetic current over the
aperture and denotes the free-space Green’s func-
tion given by

(14)
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where and are the position vectors that denote the observa-
tion and source points, respectively. Substituting (13) into (12)
and manipulating the vector equation, we obtain

(15)

By the typical finite-element procedure, the cavity aperture,
as well as the volume, is subdivided into small surface patches,
and (9) is then written as the following matrix equation:

(16)

where is the source vector to be used at the next itera-
tion, is the source vector invariant with iterations, which
is calculated with the incident and reflected fields, is the
electric-field coefficient vector on the aperture calculated at the
zeroth iteration, and is the rectangular matrix that correlates
the electric-field coefficients with the source vector. Note that
a subscript “ ” denotes a vector composed of only the values
at the edges on the artificial boundary and “ ” denotes a
vector composed of only the values at the edges on the aperture

. Thus, is an by matrix where and are the
numbers of edges placed on and , respectively.

Equations (5) and (16) are generalized to theth iteration
and written as

(17)

This iteration procedure can be made computationally effi-
cient if the following properties are fully exploited in the im-
plementation. First, matrices and are invariant during the
iterations so that they are computed only once at the initial state
of the procedure. Second, since the system matrixis gener-
ated by a standard finite-element procedure and, thus, it is sym-
metric and highly sparse, it is solved efficiently by means of a
standard finite-element solver. If a direct solver is used, the de-
composition of , which is time consuming, is performed only
once at the zeroth iteration. If an iterative solver is used, the so-
lution at the th iteration is a good initial guess for the iterative
solver at the th iteration, and the preconditioner, if any,
is calculated only once. Third, only a very small increase of the
computational domain is necessary since the fictitious boundary
surface can be placed so close around the scattering objects.
These features make the iterative FEM competitive with other
techniques as far as computing time and memory requirements
are concerned. In addition, preexisting FEM codes for bounded
problems may be easily incorporated into this iteration proce-
dure and only one part has to be added that corresponds to the
computation of the matrix . Note that singularity extraction,
which should be carried out in the FEBIM, is not necessary in
this calculation since the fictitious boundary surface is placed at
a given distance from the aperture surface.

Fig. 2. Monostatic RCS patterns for a deep empty rectangular cavity
of dimensions0:7� � 0:1� � 1:73� versus incidence angle� when
� = 40 . Solid lines with filled squares and triangles represent this method;
solid and dotted lines represent the FEBIM and vacant circles and squares
represent the moment method/modal approach. (a)� = 90 E = �̂E .

(b) � = 0 E = �̂E .

III. N UMERICAL RESULTS

In order to examine the validity and the capability of the iter-
ative FEM, we have analyzed various shapes of cavity-backed
apertures in a ground plane. In this study, triangular prism
edge-based elements [11] are used to be able to deal with an
arbitrary cross section of a cavity, as well as a rectangular cavity
and, thus, the aperture of the cavity is divided into triangular
patches.

First, with the excitation by a plane wave, scattering from a
deep empty rectangular cavity of dimensions

is considered and its results are illustrated in Fig. 2. The
co-polarized and cross-polarized monostaticRCSpatterns of
the cavity versus incidence angle when are com-
pared with data obtained by the FEBIM [12] and the moment
method/modal approach [13]. Good agreement is shown be-
tween the results.

Fig. 3 shows the convergence characteristics with respect to
the distance between the artificial boundary surfaceand the
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Fig. 3. Convergence characteristics according to the position of the artificial
boundary surface.

Fig. 4. Computational efficiency (computation time): iterative FEM
versus FEBIM.A: 1:5� � 0:05� � 0:25� narrow rectangular crack.
B: 0:5�� 0:5�� 0:3� shallow square cavity.C: 0:5�� 0:5�� 1:75� deep
square cavity.D: 1:0�� 1:0�� 1:0� large square cavity.E: Radius:0:25�
depth:0:3� shallow circular cavity.F : Radius:0:5� depth:1:5� deep circular
cavity.G: Radius:1:0� depth:0:3� large circular cavity.

aperture surface . As expected, the number of iterations in-
creases as the artificial surface is getting closer to the aper-
ture surface . On the contrary, if is placed too far from
in order to reduce the number of iterations, however, the number
of meshes increases rapidly and, thus, the overall computation
time and memory requirement increase as well. Therefore, the
optimal criterion should be determined. Unfortunately, since the
convergence condition depends on the distance betweenand

and the whole FE discretization in a very complex manner, it
is very difficult to propose an analytical criterion. Thus, we have
empirically determined the almost optimal distance between the
two surfaces through numerical experiments for numerous cav-
ities with various shapes and sizes. Up to a size ofof the
aperture in a cavity, a distance of between and

is found to be enough for a solution to converge within only
several times of iterations and this distance corresponds to one
or two layer meshes of triangular prism elements.

With this criterion, the computation time taken by the iterative
FEM is compared with that by the conventional FEBIM using
a biconjugate gradient method. Fig. 4 shows the computational
efficiency of the iterative FEM. For a fair comparison between
the two methods, the number of elements only in the cavity is
the same in both methods and, thus, the dimension of the system
matrix of the iterative FEM is larger than that of the FEBIM. In

Fig. 5. Reduced bandwidth of the system matrix after
Gibbs–Poole–Stockmeyer bandwidth profile reduction algorithm.

order to decompose this system matrix of the iterative FEM effi-
ciently, at first we used the standard Gibbs–Poole–Stockmeyer
bandwidth profile reduction algorithm [14] for the system ma-
trix to be a banded form, as illustrated in Fig. 5 and a banded
matrix solver with the profile storage [1]. However, it is
found that the reduced bandwidth is over several hundred, and
this value is much larger than the maximum number of nonzero
elements in a row of the system matrix, which is about 30 or less
when triangular prism elements are used. This leaves much to be
improved although the bandwidth reduction and the de-
composition considerably save both storage and operation count
in the triangular factorization process. Thus, we have replaced
the above with sparse matrix LU decomposition algorithm using
minimum degree ordering [15], which is commonly used for re-
ducing fill-in during factorization of a sparse matrix. With this
algorithm, the iterative FEM is about twice or three times faster
than the conventional FEBIM for scattering by various cavities,
as shown in Fig. 4.

IV. CONCLUSIONS

An efficient iterative FEM in two dimensions, which avoids
internal resonance, is extended to three dimensions and applied
to scattering from a 3-D cavity-backed aperture. Through ex-
haustive numerical experiments, an empirical convergence cri-
terion for this method is proposed. The validity and efficiency
of this method is shown by comparing this method with the con-
ventional FEBIM.
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