To evaluate eqn. 4, noise current source i; should be determined
accurately. The empirical formula given in [5] was employed in
this work. Applying Dragone’s theory for diodes [6] to this empir-
ical formula, the correlation between the mth and sth mixing fre-
quencies of i; was evaluated as

I46(2)
Vas(t)
where [ ],., is (m—n)th Fourier coefficient. Parameter P has been

extracted for various MESFETs and HEMTs and turned out to be
very close to 1. In this work, P was set to 1.

timit, =4KTB [ . P(t)] (5)
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Fig. 2 Phasor diagram of noise current power (tT ) due to intrinsic
noise source at P, = —1dBm

noise figure, dB
©
T

3
-15 -10 -5 0 5
LO power, dBm
(7]
Fig. 3 Comparison of measured and modelled noise figures in FET resis-
tive mixers
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Simplification and validation: To verify the analysis method, a
hybrid-type resistive mixer using 0.25um PHEMTs was designed
and fabricated to operate at 10GHz. Using a table-based nonlin-
ear model, a single-tone harmonic balance simulation was per-
formed to evaluate the harmonic components of G, at various LO
power levels. Following the analysis presented earlier, contribu-
tions from each frequency component of the intrinsic noise (each
term in eqn. 4) were evaluated and expressed in phasor form as in
Fig. 2. Dominant components can, in this way, be easily found.
The following observations can be made on the intrinsic noise
source contribution: (i) self-terms in eqn. 4 add in-phase, (ii) corre-
lation between IF and IM and IF and RF frequency components
add out-of-phase with the self-terms, reducing the total noise level.

After identifying dominant components, a simplified analytical
expression can be obtained in the following form:

_ 1 ) |Lrp|?
F =14 gzl {(2 + —ILRFI2> (R, + Ra)

|LIF|2 I
7 2 A G
+ (2l s,RFl ]L |2l l,”:‘2 dsp

+2Re [LRFL;FZS,RFZZ*’IFGdSI]} (6)

where Z zr = Z(apr) + R+ R, and Z,)r = Z(wy) + R + R,
Eqn. 6 can be used as a first-order design formula for noise figures
in FET resistive mixers.

The modelled noise figure data were compared with measure-
ments in Fig. 3. Excellent agreement was found between the meas-
ured and modelled noise figure at various LO power levels.

Conclusion: An analytical analysis method for the evaluation of
noise figures in FET resistive mixers has been developed. For bet-
ter accuracy, an empirical noise model was employed to represent
the intrinsic noise source. A phasor diagram analysis has enabled
a physical understanding of the mixing mechanism to be obtained
and allowed a simplified noise figure formula to be developed
which can be used as a first-pass design tool.
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Efficient hybrid method for characterisation
of arbitrary-shaped discontinuities in
rectangular waveguide

Jongkuk Park, Heeduck Chae and Sangwook Nam

An efficient hybrid method is proposed for analysing
discontinuities in a rectangular waveguide. With only a small
number of meshes around discontinuities, the typical finite
element method is shown to give an exact solution through
several iterative updates of the boundary conditions. To
demonstrate the validity of the proposed method, a simple
circular aperture in a rectangular waveguide is analysed and
results compared with those of another method.

Introduction. The finite element method has been used as a power-
ful tool for solving arbitrary-shaped discontinuities in shielded
structures. However, for open region problems, it has difficulties
in discretising infinite domains since the finite element meshes
must be terminated far away from the obstacle so that the abrupt
termination of meshes has no effect on the solution. To overcome
these shortcomings, the iterative hybrid method was proposed to
solve electrostatic and TM 2D scattering problems in open space,
and found to give a good result in open region problems (1, 2]. In
the case of applying the finite element method to waveguide prob-
lems, the fictitious plane for terminating meshes should be placed
far enough from the obstacle so that higher-order modes excited
by the obstacle die out before they reach the plane. This requires a
large number of meshes, and the number of unknowns becomes
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large. Thus, the finite element-boundary integral method [3, 4] has
been used to avoid these problems, and it is shown to be more
efficient [4] than the ordinary finite element method. But this
method, proposed in [3, 4], has a drawback that its system matrix
has lost the sparsity of an ordinary finite element matrix.

In this Letter, to solve three-dimensional waveguide discontinu-
ities more efficiently, an iterative finite element method is pro-
posed. This method gives an accurate result, but the meshes
required by this method are terminated so close to the discontinu-
ities that computational efforts can be greatly reduced. In addi-
tion, since sparsity in the system matrix is preserved, it does not
take more time to find the inverse of the system matrix than
required by an ordinary finite element method.
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Fig. 1 Simple circular aperture in rectangular waveguide and finite ele-
ment meshes for proposed method

Theory: As a simple example, a cross-sectional aperture in a rec-
tangular waveguide is analysed. Since the aperture is uniform
along the wave propagation axis, triangular prism elements [3] are
used. Fig. 1 shows the structure and the volume to be discretised.
The extended boundary layer in Fig. 1 can be reduced to only one
without much loss of accuracy. In Fig. 1, 4, Ayyr are fictitious
surfaces on which the Dirichlet boundary condition should be
determined. Fig. 2 describes the whole procedure of the proposed
method. First, the initial fields on A,y, A,y are assumed. Since
these fields would be updated later, it can be determined arbitrar-
ily. In this Letter, the dominant TE;, mode is assumed to exist on
A, Aoyr initially. Once the boundary condition is determined in
this way, the typical finite element procedure is applied. With the
Dirichlet boundary condition, the function is as follows:

F(B) = %/V ﬂi(v x B)-(V x B) - k2e, B-Bdv (1)

With this function minimised, the field on 4,, 4, can be deter-
mined. From the surface equivalence theorem and image theory,
the imaginary magnetic current source is introduced and this
source updates the field on 4,, A,y Since the fields on the
boundary are total fields, the fields on the input boundary are
composed of the incident field, the field reflected by the conduct-
ing plane, and the field scattered by the equivalent magnetic cur-
rent source, while the fields on the output are composed of only
the field scattered by the equivalent source. The incident field and
the reflected field are known. The scattered fields on the boundary
can be evaluated using eqn. 2:

8GF2$
oz

- 0
E.sca.t = 2/ iiMyi GaFyy _ :l]Mg;l
A; z

aGFzz
9y

where A; represents the surface 4, or 4,, and M., M,, are equiva-
lent magnetic currents on A,. Gy,,, Gy, are potential Green func-

+2 (Mri - Myi‘%;i ’“’) ds’ (2)

assume initial field
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converged?
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Fig. 2 Entire procedure of iterative finite element method
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tions in a rectangular waveguide. Since the Green function
inherently has a slow convergence property, we have accelerated
the calculation of the Green function using the Poisson summa-
tion formula and the Kummer transform [5]. The numerical inte-
gration of the Green function can be regarded as the most time
consuming in this method. However, it must be carried out at the
first iteration, and the results can be used in the subsequent itera-
tions. Therefore, this is not a serious problem. In this way, once
the boundary condition is updated, the same procedure is repeated
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until the difference between the current boundary fields and
updated boundary fields at the next iteration process reduces to
the prescribed error criterion. Since this iteration process is com-
pleted within only several repetitions, the proposed method is con-
sidered to give an efficient solution for waveguide discontinuities.

Numerical results: For a circular aperture with radius 0.3cm in
WR-90, the performance of the proposed method is compared
with that of the finite element-boundary integral method [3]. As
shown in Fig. 3, the proposed method gives a result in good agree-
ment with [3] and is more efficient in terms of computation time,

Conclusions: A novel iterative finite element method has been
applied to a waveguide problem. The proposed method is shown
to be not only simple to use but also very effective since it exploits
a typical finite element procedure with only a small number of
meshes and it requires only several periods of iterations. There-
fore, this method is thought to represent an efficient tool for the
analysis of various types of waveguide discontinuities.
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Circuit implementation of K-winner machine

S. Ridella, S. Rovetta and R. Zunino

The K-winner machine (KWM) model for supervised
classification enhances vector quantisation by characterising
classification outcomes with confidence levels. Each data-space
location is assigned a specific local bound to the error probability.
Structural simplicity makes the implementation compatible with
circuitry for classical VQ, and features high speed and efficiency.

KWM model: A prototype-based schema spans the data space by
a set of reference positions (‘prototypes’, ‘codewords’). The maxi-
mum similarity drives the categorisation process, which classifies
each sample with the class of the best-matching prototype. Thus
vector quantiSation (VQ) involves a winner-takes-all (WTA)
schema, and partitions the data space into as many Voronoi sub-
regions as the number of prototypes. The samples lying in a region
are classified according to the related prototype. WTA-based cate-
gorisation is not usually characterised by a confidence measure: as
far as classification is concerned, all points within a region are
equivalent and with an equal confidence value.

The K-winner machine (KWM) overcomes such a drawback by
taking into account, for each test sample, a larger set of proto-
types including K elements (K 2 1). Similarly to WTA, the KWM
uses the ‘winning’ prototype to set classification; however, it also
seeks the largest number X of best-matching prototypes that agree

with the winner. The level of agreement depends on the test loca-
tion, hence each data point yields a specific value of K. The basic
assumption is that a point with a large K value denotes high confi-
dence in the associate classification. The KWM embeds classical
WTA in the minimal case K = 1: when even the second best-guess
disagrees with the winning candidate, confidence reaches its mini-
mum. A WTA classifier and a KWM involve the same representa-
tion structure, i.e. a set of class-calibrated prototypes positioned in
the data space by some VQ algorithm. Thus KWM training does
not differ from any conventional VQ-classifier setup. Instead, the
KWM run-time operation for classifying a sample x can be out-
lined as follows:
(i) compute the distance d, between x and each prototype w,, j = 1,
vees N
(i) sort the list of prototypes in order of increasing d,
(iii) work out the largest X value such that Class(w,) = Class(w,)
Vk=1,...K
(iv) a classify x according to the winning prototype, Cl(w,) (=
WTA classification).
b prompt K as the confidence level for the present classifica-
tion outcome.
Measuring the agreement among prototypes (step (iii)) helps pre-
dict the generalisation performance: it can be proved [1] that the
Vapnik-Chervonenkis dimension [2] of a K-winner machine can be
computed exactly as

dvc = |Nn/K| 1)

Therefore, by using eqn. 1 and basic results from generalisation
theory [1], we set a bound on the KWM classifier’s error probabil-
ity m, given by

_ 1 2N\ o m
S e e

where v is the classification error for a training set including N,
samples, and 1 (typ. = 0.05) is a confidence parameter.

Fig. 1 KWM results on Gaussian-mixture testbed

a Training data (three classes)
b Confidence map; darker areas denote higher K and higher confi-
dence; bright regions (low K) span class boundaries

In summary, for each test location in the data space, we first
compute the local K value, then by using [1, 2] we determine a
bounded estimate of the expected error probability. The opportu-
nity to predict the generalisation ability analytically and at the
local level represents a crucial advantage of the KWM model. A
KWM differs from a voting schema substantially, as prototypes
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